login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217483
Alternating sums of the numbers in sequence A080253.
5
1, 2, 15, 132, 1565, 22918, 400939, 8160008, 189453369, 4942271754, 143128015943, 4556517918604, 158167223290453, 5945611873120910, 240619359452963427, 10430922482219093520, 482234053313600047217, 23683786738296923795986
OFFSET
0,2
FORMULA
a(n) = sum((-1)^(n-k)*c(k),k=0..n), where c(n) = A080253(n).
E.g.f.: exp(x)/(2-exp(2*x)) - (1/2)*exp(-x)*log(1/(2-exp(2*x))). - corrected by Vaclav Kotesovec, Nov 27 2017
a(n) ~ n! * 2^(n - 1/2) / (log(2))^(n+1). - Vaclav Kotesovec, Nov 27 2017
MATHEMATICA
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[(-1)^(n-k)c[k], {k, 0, n}], {n, 0, 100}]
nmax = 20; CoefficientList[Series[E^x/(2 - E^(2*x)) + Log[2 - E^(2*x)] / (2*E^x), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 27 2017 *)
PROG
(Maxima) t(n):=sum(stirling2(n, k)*k!, k, 0, n);
c(n):=sum(binomial(n, k)*2^k*t(k), k, 0, n);
makelist(sum((-1)^(n-k)*c(k), k, 0, n), n, 0, 10);
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 04 2012
STATUS
approved