The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217483 Alternating sums of the numbers in sequence A080253. 5
 1, 2, 15, 132, 1565, 22918, 400939, 8160008, 189453369, 4942271754, 143128015943, 4556517918604, 158167223290453, 5945611873120910, 240619359452963427, 10430922482219093520, 482234053313600047217, 23683786738296923795986 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..17. FORMULA a(n) = sum((-1)^(n-k)*c(k),k=0..n), where c(n) = A080253(n). E.g.f.: exp(x)/(2-exp(2*x)) - (1/2)*exp(-x)*log(1/(2-exp(2*x))). - corrected by Vaclav Kotesovec, Nov 27 2017 a(n) ~ n! * 2^(n - 1/2) / (log(2))^(n+1). - Vaclav Kotesovec, Nov 27 2017 MATHEMATICA t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[(-1)^(n-k)c[k], {k, 0, n}], {n, 0, 100}] nmax = 20; CoefficientList[Series[E^x/(2 - E^(2*x)) + Log[2 - E^(2*x)] / (2*E^x), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 27 2017 *) PROG (Maxima) t(n):=sum(stirling2(n, k)*k!, k, 0, n); c(n):=sum(binomial(n, k)*2^k*t(k), k, 0, n); makelist(sum((-1)^(n-k)*c(k), k, 0, n), n, 0, 10); CROSSREFS Cf. A080253, A000670, A217484, A217485, A217486, A217487, A217488. Sequence in context: A365151 A140306 A143924 * A214043 A347993 A215922 Adjacent sequences: A217480 A217481 A217482 * A217484 A217485 A217486 KEYWORD nonn AUTHOR Emanuele Munarini, Oct 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 16:55 EST 2024. Contains 370237 sequences. (Running on oeis4.)