login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217486
Binomial convolution of the numbers in sequence A080253.
6
1, 6, 52, 600, 8656, 149856, 3026752, 69866880, 1814338816, 52350752256, 1661575754752, 57531530434560, 2158011794968576, 87173881613869056, 3772959800981143552, 174183372619165040640, 8543978588021450407936, 443748799382401230176256
OFFSET
0,2
LINKS
FORMULA
a(n) = sum(binomial(n,k)*c(k)*c(n.k),k=0..n), where c(n) = A080253(n).
a(n) = 2^n*t(n+1), where t(n) = ordered Bell numbers (A000670).
E.g.f. exp(2*x)/(2-exp(2*x))^2.
G.f.: 1/G(0) where G(k) = 1 - x*3*(2*k+2) + x^2*(k+1)*(k+2)*(1-3^2)/G(k+1) ; (continued fraction due to T. J. Stieltjes). - Sergei N. Gladkovskii, Jan 11 2013.
a(n) ~ n!*n*2^(n-1)/(log(2))^(n+2). - Vaclav Kotesovec, Aug 11 2013
MATHEMATICA
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[Binomial[n, k]c[k]c[n-k], {k, 0, n}], {n, 0, 100}]; Table[2^n t[n+1], {n, 0, 100}]
With[{nn=20}, CoefficientList[Series[Exp[2x]/(2-Exp[2x])^2, {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Oct 09 2017 *)
PROG
(Maxima) t(n):=sum(stirling2(n, k)*k!, k, 0, n);
c(n):=sum(binomial(n, k)*2^k*t(k), k, 0, n);
makelist(sum(binomial(n, k)*c(k)*c(n-k), k, 0, n), n, 0, 10);
makelist(2^n*t(n+1), n, 0, 40);
(Sage)
def A217486(n):
return 2^n*add(add((-1)^(j-i)*binomial(j, i)*i^(n+1) for i in range(n+2)) for j in range(n+2))
[A217486(n) for n in range(18)] # Peter Luschny, Jul 22 2014
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 04 2012
STATUS
approved