Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Oct 09 2017 17:12:01
%S 1,6,52,600,8656,149856,3026752,69866880,1814338816,52350752256,
%T 1661575754752,57531530434560,2158011794968576,87173881613869056,
%U 3772959800981143552,174183372619165040640,8543978588021450407936,443748799382401230176256
%N Binomial convolution of the numbers in sequence A080253.
%H Vincenzo Librandi, <a href="/A217486/b217486.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = sum(binomial(n,k)*c(k)*c(n.k),k=0..n), where c(n) = A080253(n).
%F a(n) = 2^n*t(n+1), where t(n) = ordered Bell numbers (A000670).
%F E.g.f. exp(2*x)/(2-exp(2*x))^2.
%F G.f.: 1/G(0) where G(k) = 1 - x*3*(2*k+2) + x^2*(k+1)*(k+2)*(1-3^2)/G(k+1) ; (continued fraction due to T. J. Stieltjes). - _Sergei N. Gladkovskii_, Jan 11 2013.
%F a(n) ~ n!*n*2^(n-1)/(log(2))^(n+2). - _Vaclav Kotesovec_, Aug 11 2013
%t t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[Binomial[n,k]c[k]c[n-k], {k,0,n}], {n,0,100}]; Table[2^n t[n+1], {n,0,100}]
%t With[{nn=20},CoefficientList[Series[Exp[2x]/(2-Exp[2x])^2,{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Oct 09 2017 *)
%o (Maxima) t(n):=sum(stirling2(n,k)*k!,k,0,n);
%o c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
%o makelist(sum(binomial(n,k)*c(k)*c(n-k),k,0,n),n,0,10);
%o makelist(2^n*t(n+1),n,0,40);
%o (Sage)
%o def A217486(n):
%o return 2^n*add(add((-1)^(j-i)*binomial(j,i)*i^(n+1) for i in range(n+2)) for j in range(n+2))
%o [A217486(n) for n in range(18)] # _Peter Luschny_, Jul 22 2014
%Y Cf. A080253, A000670, A217483, A217484, A217485, A217487, A217488.
%K nonn
%O 0,2
%A _Emanuele Munarini_, Oct 04 2012