login
A364621
G.f. satisfies A(x) = 1/(1-x)^2 + x*A(x)^4.
2
1, 3, 15, 118, 1125, 11805, 131431, 1524090, 18208749, 222570985, 2770129627, 34985756752, 447243818573, 5775955923428, 75245253495035, 987627627396792, 13048147674230169, 173382031819242855, 2315662483861709467, 31068798980975635130, 418552735866147739185
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n+5*k+1,6*k+1) * binomial(4*k,k) / (3*k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+5*k+1, 6*k+1)*binomial(4*k, k)/(3*k+1));
CROSSREFS
Sequence in context: A369722 A259843 A136654 * A145161 A121422 A060639
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 30 2023
STATUS
approved