login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303790
G.f. satisfies: 120*(1-216*x)*A(x) + (1-3*(1-216*x)^2)*A'(x) - (1-216*x)*(2-216*x)*x*A''(x) = 0, a(0)=1.
1
1, 60, 7380, 1090320, 176978340, 30471320880, 5461962826320, 1007754602437440, 189974650649174820, 36407481107391279600, 7068262344580438681680, 1386636913539840633652800, 274365765112318301005693200, 54676607910763730416065374400
OFFSET
0,2
COMMENTS
The surface "u = 2H = p^2 + q^2 - (4/27)*q^6" determines a Picard-Fuchs equation, "5*u*T(u) + 9*(3*u^2-1)*T'(u) + 9*(u^2-1)*u*T''(u) = 0", (cf. link to "Proof Certificate"). The Picard-Fuchs differential equation transforms to the defining relation by "u->1-216*x". G.f. A(x) generates coefficients of the complex period-energy function, while the real period-energy function can be written in terms of hypergeometric A113424. These results agree with Kreshchuk and Gulden, as "d/du(5*u*T(u) + 9*(3*u^2-1)*T'(u) + 9*(u^2-1)*u*T''(u)) = 5*T(u) + 59*u*T'(u) + 18*(3*u^2-1)*T''(u) + 9*u*(u^2-1)*T'''(u) = 0" (cf. Eq. 16).
LINKS
Bradley Klee, Proof Certificate
Brad Klee, Deriving Hypergeometric Picard-Fuchs Equations, Wolfram Demonstrations Project (2018).
FORMULA
G.f.: 2F1(1/6, 5/6; 1; 432*x - 46656*x^2).
D-finite with recurrence a(0) = 1; a(1) = 60; a(n) = (c1/c0)*216*a(n-1) + (c2/c0)*216^2*a(n-2); with c1 = 5-27*n+27*n^2; c2 = (5-3*n)*(-1+3*n); c0 = 18*n^2.
a(n) ~ 6^(3*n) / (Pi*n). - Vaclav Kotesovec, May 01 2018
EXAMPLE
G.f. = 1 + 60*x + 7380*x^2 + 1090320*x^3 + 176978340*x^4 + 30471320880*x^5 + ... Michael Somos, Jun 22 2018
MATHEMATICA
a[0] = 1; a[1] = 60;
a[n0_] := a[n0] = ReplaceAll[Dot[Divide[
{5-27*n+27*n^2, (5-3*n)*(-1+3*n)}, 18*n^2],
{216*a[n0-1], (216^2)*a[n0-2]}], n->n0]
a /@ Range[0, 15]
(* Second program: *)
CoefficientList[Series[Hypergeometric2F1[1/6, 5/6, 1, 432*x - 46656*x^2], {x, 0, 20}], x]
CROSSREFS
Real Period: A113424.
Sequence in context: A178785 A091753 A336629 * A327678 A130214 A295815
KEYWORD
nonn
AUTHOR
Bradley Klee, Apr 30 2018
STATUS
approved