Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #68 Jun 29 2023 10:08:54
%S 1,2,7,26,103,410,1639,6554,26215,104858,419431,1677722,6710887,
%T 26843546,107374183,429496730,1717986919,6871947674,27487790695,
%U 109951162778,439804651111,1759218604442,7036874417767,28147497671066,112589990684263,450359962737050
%N a(n) = (4^(n+1) + (-1)^n + 5)/10.
%C a(n) is a part of the numerator of the approximate solutions x(n) = (Pi/2)*(1+5/((4^(n+1)-(-1)^(n+1)))) = a(n)*Pi/A015521(n+1) of D_d(exp(-i*x(n))) = Cl_d(x(n)+Pi) = 0, where D_d(exp(-i*x(n))) is the Bloch-Wigner-Ramakrishnan polylogarithm function and Cl_d(x(n)+Pi) is the Clausen function for odd d >= 3 and n >= 0.
%H Paolo Xausa, <a href="/A363773/b363773.txt">Table of n, a(n) for n = 0..1000</a>
%H Evangelos G. Filothodoros, Anastasios C. Petkou, and Nicholas D. Vlachos, <a href="https://doi.org/10.1016/j.nuclphysb.2019.01.015">The fermion-boson map for large d</a>, Nuclear Physics B, Volume 941, 2019, pp. 195-224.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,1,-4).
%F a(n) = 1 + A037481(n).
%F G.f.: (1-2*x-2*x^2)/((x-1)*(4*x-1)*(x+1)).
%F E.g.f.: (4*e^(4*x) + e^-x + 5*e^x)/10.
%t A363773list[nmax_]:=LinearRecurrence[{4,1,-4},{1,2,7},nmax+1];A363773list[50] (* _Paolo Xausa_, Jun 29 2023 *)
%o (Python)
%o def A363773(n): return (1<<(n<<1|1))//5+1 # _Chai Wah Wu_, Jun 28 2023
%Y Cf. A015521, A037481.
%K nonn,easy
%O 0,2
%A _Evangelos G. Filothodoros_, Jun 21 2023