The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264224 G.f. A(x) satisfies: A(x)^2 = A( x^2/(1-4*x) ), with A(0) = 0. 12
 1, 2, 7, 26, 103, 422, 1774, 7604, 33109, 146042, 651256, 2931392, 13301038, 60775340, 279393742, 1291311620, 5996491666, 27962898020, 130883946751, 614664907706, 2895279687655, 13674609742598, 64744203198388, 307221794213768, 1460778188820220, 6958635514922552, 33205258829750809, 158699556581760134 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Radius of convergence is r = 1/5, where r = r^2/(1-4*r), with A(r) = 1. Compare to a g.f. M(x) of Motzkin numbers: M(x)^2 = M(x^2/(1-2*x)) where M(x) = (1-x - sqrt(1-2*x-3*x^2))/(2*x). LINKS Paul D. Hanna, Table of n, a(n) for n = 1..300 FORMULA G.f. also satisfies: (1) A(x) = -A( -x/(1-4*x) ). (2) A( x/(1+2*x) ) = -A( -x/(1-2*x) ), an odd function. (3) A( x/(1+2*x) )^2 = A( x^2/(1-4*x^2) ), an even function. (4) A(x)^4 = A( x^4/((1-4*x)*(1-4*x-4*x^2)) ). (5) [x^(2*n+1)] (x/A(x))^(2*n) = 0 for n>=0. (6) [x^(2^n+k)] (x/A(x))^(2^n) = 0 for k=1..2^n-1, n>=1. Given g.f. A(x), let F(x) denote the g.f. of A264412, then: (7) A(x) = F(A(x))^2 * x/(1+4*x), (8) A(x) = F(A(x)^2) * x/(1-2*x), (9) A( x/(F(x)^2 - 4*x) ) = x, (10) A( x/(F(x^2) + 2*x) ) = x, where F(x)^2 = F(x^2) + 6*x. Sum_{k=0..n} binomial(n,k) * (-2)^(n-k) * a(k+1) = 0 for odd n. Sum_{k=0..n} binomial(n,k) * (-4)^(n-k) * a(k+1) = (-1)^n * a(n+1) for n>=0. Sum_{k=0..n} binomial(n,k) * (+4)^(n-k) * a(k+1) = A264232(n+1) for n>=0. Sum_{k=0..n} binomial(n,k) * (-8)^(n-k) * a(k+1) = (-1)^n * A264232(n+1) for n>=0. EXAMPLE G.f.: A(x) = x + 2*x^2 + 7*x^3 + 26*x^4 + 103*x^5 + 422*x^6 + 1774*x^7 + 7604*x^8 + 33109*x^9 + 146042*x^10 + 651256*x^11 + 2931392*x^12 +... where A(x)^2 = A(x^2/(1-4*x)). RELATED SERIES. A(x)^2 = x^2 + 4*x^3 + 18*x^4 + 80*x^5 + 359*x^6 + 1620*x^7 + 7354*x^8 + 33568*x^9 + 154023*x^10 + 710156*x^11 + 3289142*x^12 + 15297744*x^13 +... sqrt(A(x)/x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 144*x^5 + 582*x^6 + 2418*x^7 + 10266*x^8 + 44353*x^9 + 194395*x^10 +...+ A264231(n)*x^n +... A( x/(1+2*x) ) = x + 3*x^3 + 15*x^5 + 90*x^7 + 597*x^9 + 4212*x^11 + 30942*x^13 + 233766*x^15 + 1802706*x^17 + 14122359*x^19 + 112033791*x^21 + 898024320*x^23 +... A( x^2/(1-4*x^2) ) = x^2 + 6*x^4 + 39*x^6 + 270*x^8 + 1959*x^10 + 14706*x^12 + 113166*x^14 + 887004*x^16 + 7050837*x^18 + 56672622*x^20 + 459646488*x^22 +... where A( x^2/(1-4*x^2) ) = A( x/(1+2*x) )^2. Let B(x) = x/Series_Reversion(A(x)), then A(x) = x*B(A(x)), where B(x) = 1 + 2*x + 3*x^2 - 3*x^4 + 9*x^6 - 33*x^8 + 126*x^10 - 513*x^12 + 2214*x^14 - 9876*x^16 + 45045*x^18 - 209493*x^20 +...+ A264412(n)*x^(2*n) +... such that B(x) = F(x^2) + 2*x = F(x)^2 - 4*x and F(x) is the g.f. of A264412. PARTICULAR VALUES. A(1/5) = 1. A(-1/5) = -A(1/9) = -0.15262256991492310976978497600904... A(1/6)^2 = A(1/12) = 0.10315964246752710052686298695713... A(1/6)^4 = A(1/96) = 0.01064191183402802084987998396215... A(1/7)^2 = A(1/21) = 0.053075120978549663441827849989065... A(1/7)^4 = A(1/357) = 0.002816968466887682583828696137137... A(1/8)^2 = A(1/32) = 0.033445065874191867268119916059631... A(1/8)^4 = A(1/896) = 0.001118572431329033410718706838540... A(1/9)^2 = A(1/45) = 0.0232936488474355927381514600230212... PROG (PARI) {a(n) = my(A=x); for(i=1, n, A = sqrt( subst(A, x, x^2/(1-4*x +x*O(x^n))) ) ); polcoeff(A, n)} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A264231, A264232, A264412, A264225, A264226, A264227. Sequence in context: A150537 A363773 A119243 * A150538 A150539 A150540 Adjacent sequences: A264221 A264222 A264223 * A264225 A264226 A264227 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 08 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 15:18 EDT 2024. Contains 372758 sequences. (Running on oeis4.)