OFFSET
0,3
COMMENTS
Self-convolution square root of A264224.
Radius of convergence is r = 1/5 with A(1/5) = sqrt(5).
FORMULA
G.f. A(x) satisfies:
(1) A(x)^2 = A( x^2/(1-4*x) ) / sqrt(1-4*x).
(2) A( x/(1+2*x) )^2 / (1+2*x) = A( x^2/(1-4*x^2) ) / sqrt(1-4*x^2).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 144*x^5 + 582*x^6 + 2418*x^7 +...
where A(x) = A( -x/(1-4*x) ) / sqrt(1-4*x).
RELATED SERIES.
Note that A(x)^2 = A( x^2/(1-4*x) ) / sqrt(1-4*x):
A(x)^2 = 1 + 2*x + 7*x^2 + 26*x^3 + 103*x^4 + 422*x^5 + 1774*x^6 + 7604*x^7 + 33109*x^8 + 146042*x^9 + 651256*x^10 +...+ A264224(n-1)*x^n +...
where
A( x^2/(1-4*x) ) = 1 + x^2 + 4*x^3 + 19*x^4 + 88*x^5 + 410*x^6 + 1912*x^7 + 8933*x^8 + 41808*x^9 + 196016*x^10 + 920640*x^11 + 4331590*x^12 +...
Also,
A( x/(1+2*x) ) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 8*x^5 + 30*x^6 + 42*x^7 + 198*x^8 + 257*x^9 + 1385*x^10 + 1724*x^11 + 10072*x^12 +...
such that
A( x/(1+2*x) )^2 / (1+2*x) = 1 + 3*x^2 + 15*x^4 + 90*x^6 + 597*x^8 + 4212*x^10 + 30942*x^12 + 233766*x^14 + 1802706*x^16 +...
equals A( x^2/(1-4*x^2) ) / sqrt(1-4*x^2).
PROG
(PARI) {a(n) = my(A=1+x, X=x+x*O(x^n)); for(i=1, n, A = subst(A, x, x^2/(1-4*X))^(1/2)/(1-4*X)^(1/4) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 29 2015
STATUS
approved