login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264233
G.f. satisfies: A(x)^2 = A( x^2/(1-12*x)^2 ).
3
1, 12, 150, 1944, 25977, 355932, 4975974, 70684920, 1016911392, 14778827136, 216547264296, 3194332332192, 47384274750705, 706221689838300, 10568432343600990, 158713925474269080, 2390963478663939555, 36119150645827725540, 547001314170524048970, 8302813348383238118760, 126288497159001902128185, 1924561894757711270308380
OFFSET
1,2
COMMENTS
Radius of convergence is r = 1/16 where r = r^2/(1-12*r)^2 with A(r) = 1.
Compare to: C(x)^2 = C( x^2/(1-2*x)^2 ) where C(x) = (1-2*x-sqrt(1-4*x))/(2*x) is a g.f. of the Catalan numbers A000108.
FORMULA
G.f. satisfies:
(1) A(x) = -A( -x/(1-24*x) ).
(2) A(x^2) = A( x/(1+12*x) )^2 = A( -x/(1-12*x) )^2.
(3) A( x/(1+6*x)^2 ) = -A( -x/(1-6*x)^2 ), an odd function.
(4) A( x/(1+6*x)^2 )^2 = A( x^2/(1+36*x^2)^2 ), an even function.
(5) A( x/(1+9*x) ) = G(x) = Sum_{n>=1} A264225(n)*x^n where G(x)^2 = G( x^2/(1-6*x) ).
(6) A( x/(1+15*x) ) = -G(-x) = Sum_{n>=1} (-1)^(n-1) * A264225(n)*x^n where G(x)^2 = G( x^2/(1-6*x) ).
Sum_{k=0..n} binomial(n,k) *(-12)^(n-k) * a(k+1) = 0 for odd n.
Sum_{k=0..n} binomial(n,k) * (-9)^(n-k) * a(k+1) = A264225(n+1) for n>=0.
Sum_{k=0..n} binomial(n,k) *(-15)^(n-k) * a(k+1) = (-1)^n * A264225(n+1) for n>=0.
EXAMPLE
G.f.: A(x) = x + 12*x^2 + 150*x^3 + 1944*x^4 + 25977*x^5 + 355932*x^6 + 4975974*x^7 + 70684920*x^8 + 1016911392*x^9 + 14778827136*x^10 + 216547264296*x^11 +...
where A( x^2/(1-12*x)^2 ) = A(x)^2,
A( x^2/(1-12*x)^2 ) = x^2 + 24*x^3 + 444*x^4 + 7488*x^5 + 121110*x^6 + 1918512*x^7 + 30066552*x^8 + 468571392*x^9 + 7281721209*x^10 + 113007681720*x^11 +...
Also, A( x/(1+12*x) ) = A(x^2)^(1/2),
A( x/(1+12*x) ) = x + 6*x^3 + 57*x^5 + 630*x^7 + 7584*x^9 + 96552*x^11 + 1277937*x^13 + 17393454*x^15 + 241666275*x^17 + 3410638362*x^19 + 48723929721*x^21 +...
Let B(x) = x/Series_Reversion( A(x) ), so that A(x) = x*B(A(x)), then
B(x) = 1 + 12*x + 6*x^2 - 15*x^4 + 90*x^6 - 660*x^8 + 5310*x^10 - 45765*x^12 + 413640*x^14 - 3864345*x^16 + 37014120*x^18 - 361577790*x^20 +...+ A264413(n)*x^(2*n) +...
such that B(x) = F(x^2) + 12*x = F(x)^2 where F(x) is the g.f. of A264413.
PROG
(PARI) {a(n) = my(A=x); for(i=1, #binary(n+1), A = sqrt( subst(A, x, x^2/(1-12*x +x*O(x^n))^2) ) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 17 2015
STATUS
approved