OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
László Németh, Hyperbolic Pascal pyramid, arXiv:1511.02067 [math.CO], 2015 (6th line of Table 1).
Index entries for linear recurrences with constant coefficients, signature (12,-37,37,-12,1).
FORMULA
a(n) = 12*a(n-1) - 37*a(n-2) + 37*a(n-3) - 12*a(n-4) + a(n-5).
a(n) = (-3/2 + 9*sqrt(5)/10)*((3 + sqrt(5))/2)^n + (-3/2 - 9*sqrt(5)/10)*((3 - sqrt(5))/2)^n + (7/12 - 3*sqrt(15)/20)*(4 + sqrt(15))^n + (7/12 + 3*sqrt(15)/20)*(4 - sqrt(15))^n + 17/6. (See Németh paper, page 9.)
G.f.: (1 - 9*x + 7*x^2 + 15*x^3 + 3*x^4)/((1 - x)*(1 - 3*x + x^2)*(1 - 8*x + x^2)). [Bruno Berselli, Nov 09 2015]
a(n) = A076765(n-3) + 3*Fibonacci(2*(n-1)) + 3. - Ehren Metcalfe, Apr 18 2019
MATHEMATICA
LinearRecurrence[{12, -37, 37, -12, 1}, {1, 3, 6, 13, 36}, 30] (* Bruno Berselli, Nov 09 2015 *)
PROG
(PARI) Vec((1-9*x+7*x^2+15*x^3+3*x^4)/((1-x)*(1-3*x+x^2)*(1-8*x+x^2)) + O(x^50)) \\ Altug Alkan, Nov 09 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Nov 09 2015
EXTENSIONS
More terms from Bruno Berselli, Nov 09 2015
STATUS
approved