login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A264237
Sum of values of vertices at level n of the hyperbolic Pascal pyramid.
7
1, 3, 9, 33, 165, 1137, 9837, 95193, 962541, 9884889, 102049197, 1055383929, 10921055661, 113032307769, 1169952636525, 12109971475065, 125349031354029, 1297477519769145, 13430093334225645, 139013932289379321, 1438923355509080877, 14894194022848480185
OFFSET
0,2
LINKS
László Németh, Hyperbolic Pascal pyramid, arXiv:1511.02067 [math.CO], 2015 (6th line of Table 2).
FORMULA
a(n) = 18*a(n-1) - 99*a(n-2) + 226*a(n-3) - 224*a(n-4) + 92*a(n-5) - 12*a(n-6), for n >= 7.
G.f.: -(20*x^5-8*x^4+58*x^3-54*x^2+15*x-1) / ((x-1)*(2*x^2-4*x+1)*(6*x^3-28*x^2+13*x-1)). - Colin Barker, Nov 09 2015
MATHEMATICA
CoefficientList[Series[-(20*x^5 - 8*x^4 + 58*x^3 - 54*x^2 + 15*x - 1)/((x - 1)*(2*x^2 - 4*x + 1)*(6*x^3 - 28*x^2 + 13*x - 1)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
PROG
(PARI) Vec(-(20*x^5-8*x^4+58*x^3-54*x^2+15*x-1)/((x-1)*(2*x^2-4*x+1)*(6*x^3-28*x^2+13*x-1)) + O(x^30)) \\ Colin Barker, Nov 09 2015
CROSSREFS
Sequence in context: A007489 A294638 A201968 * A097677 A138769 A100076
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Nov 09 2015
EXTENSIONS
Definition edited by Eric M. Schmidt, Sep 17 2017
STATUS
approved