login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264237 Sum of values of vertices at level n of the hyperbolic Pascal pyramid. 7
1, 3, 9, 33, 165, 1137, 9837, 95193, 962541, 9884889, 102049197, 1055383929, 10921055661, 113032307769, 1169952636525, 12109971475065, 125349031354029, 1297477519769145, 13430093334225645, 139013932289379321, 1438923355509080877, 14894194022848480185 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..987

László Németh, Hyperbolic Pascal pyramid, arXiv:1511.02067 [math.CO], 2015 (6th line of Table 2).

Index entries for linear recurrences with constant coefficients, signature (18,-99,226,-224,92,-12).

FORMULA

a(n) = 18*a(n-1) - 99*a(n-2) + 226*a(n-3) - 224*a(n-4) + 92*a(n-5) - 12*a(n-6), for n >= 7.

G.f.: -(20*x^5-8*x^4+58*x^3-54*x^2+15*x-1) / ((x-1)*(2*x^2-4*x+1)*(6*x^3-28*x^2+13*x-1)). - Colin Barker, Nov 09 2015

MATHEMATICA

CoefficientList[Series[-(20*x^5 - 8*x^4 + 58*x^3 - 54*x^2 + 15*x - 1)/((x - 1)*(2*x^2 - 4*x + 1)*(6*x^3 - 28*x^2 + 13*x - 1)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)

PROG

(PARI) Vec(-(20*x^5-8*x^4+58*x^3-54*x^2+15*x-1)/((x-1)*(2*x^2-4*x+1)*(6*x^3-28*x^2+13*x-1)) + O(x^30)) \\ Colin Barker, Nov 09 2015

CROSSREFS

Cf. A035344, A264236.

Sequence in context: A007489 A294638 A201968 * A097677 A138769 A100076

Adjacent sequences:  A264234 A264235 A264236 * A264238 A264239 A264240

KEYWORD

nonn,easy

AUTHOR

Michel Marcus, Nov 09 2015

EXTENSIONS

Definition edited by Eric M. Schmidt, Sep 17 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 03:11 EDT 2021. Contains 347620 sequences. (Running on oeis4.)