login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294638
E.g.f. satisfies: A'(x) = A(x) * A(x^2).
2
1, 1, 1, 3, 9, 33, 153, 963, 6129, 47457, 393489, 3689379, 36673209, 410924097, 4810169961, 64694478627, 878318278497, 13230037503297, 203967546446241, 3494178651687363, 60117798742663401, 1137159539308348641, 21683284489630748601, 452680959717183978243, 9454328250188008785489, 214087305044257976127393, 4862802200825123466537393, 119970186740330465448543843, 2944202974922987534742898329
OFFSET
0,4
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n) * x^n/n! satisfies:
(1) A(x) = exp( Integral A(x^2) dx ).
(2) A(x) = 1/A(-x).
(3) A(x) = exp( Sum_{n>=0} a(n) * x^(2*n+1) / ((2*n+1)*n!) ) .
(4) A(x) = exp( Sum_{n>=0} (2*n)!/n! * a(n) * x^(2*n+1)/(2*n+1)! ).
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 33*x^5/5! + 153*x^6/6! + 963*x^7/7! + 6129*x^8/8! + 47457*x^9/9! + 393489*x^10/10! + 3689379*x^11/11! + 36673209*x^12/12! + 410924097*x^13/13! + 4810169961*x^14/14! + 64694478627*x^15/15! + 878318278497*x^16/16! + 13230037503297*x^17/17! + 203967546446241*x^18/18! + 3494178651687363*x^19/19! + ...
such that A'(x) = A(x) * A(x^2).
Also, A(x) = exp( Integral A(x^2) dx ).
RELATED SERIES.
The logarithm of the e.g.f. is an odd function that begins:
log(A(x)) = x + x^3/3 + x^5/(5*2!) + 3*x^7/(7*3!) + 9*x^9/(9*4!) + 33*x^11/(11*5!) + 153*x^13/(13*6!) + 963*x^15/(15*7!) + 6129*x^17/(17*8!) + 47457*x^19/(19*9!) + 393489*x^21/(21*10!) +...+ a(n) * x^(2*n+1)/((2*n+1)*n!) +...
which equals Integral A(x^2) dx.
Explicitly,
log(A(x)) = x + 2*x^3/3! + 12*x^5/5! + 360*x^7/7! + 15120*x^9/9! + 997920*x^11/11! + 101787840*x^13/13! + 16657280640*x^15/15! + 3180450873600*x^17/17! + 837294557299200*x^19/19! +...+ (2*n)!/n! * a(n) * x^(2*n+1)/(2*n+1)! +...
PROG
(PARI) {a(n) = my(A=1); for(i=1, #binary(n+1), A = exp( intformal( subst(A, x, x^2) +x*O(x^n)) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A138292.
Sequence in context: A294035 A374347 A007489 * A201968 A264237 A097677
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2017
STATUS
approved