login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294640
G.f. A(x) = Sum_{n>=0} x^n/a(n) satisfies: A(x) = A(x^2) + Integral A(x^2) dx.
2
1, 1, 1, 3, 1, 5, 3, 21, 1, 9, 5, 55, 3, 39, 21, 315, 1, 17, 9, 171, 5, 105, 55, 1265, 3, 75, 39, 1053, 21, 609, 315, 9765, 1, 33, 17, 595, 9, 333, 171, 6669, 5, 205, 105, 4515, 55, 2475, 1265, 59455, 3, 147, 75, 3825, 39, 2067, 1053, 57915, 21, 1197, 609, 35931, 315, 19215, 9765, 615195, 1, 65, 33, 2211, 17, 1173, 595, 42245, 9, 657, 333, 24975, 171, 13167, 6669, 526851, 5, 405, 205, 17015, 105, 8925, 4515, 392805, 55, 4895, 2475, 225225, 1265, 117645, 59455, 5648225, 3, 291, 147, 14553, 75, 7575, 3825, 393975, 39, 4095, 2067, 221169, 1053, 114777, 57915, 6428565, 21, 2373, 1197, 137655, 609, 71253, 35931, 4275789, 315, 38115, 19215, 2363445, 9765, 1220625, 615195, 78129765, 1
OFFSET
0,4
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} x^n/a(n) satisfies:
(1) A'(x) = A(x^2) + 2*x*A'(x^2).
(2) A'(x) = A(x^2) + 2*x*A(x^4) + 4*x^3*A'(x^4).
(3) A'(x) = Sum_{n>=0} 2^n * x^(2^n-1) * A( x^(2^(n+1)) ).
(4) A(x) = 1 + Integral Sum_{n>=0} 2^n * x^(2^n-1) * A( x^(2^(n+1)) ) dx.
O.g.f. G(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) G(x) = G(x^2) + x * d/dx x*G(x^2).
(2) G(x) = (1+x)*G(x^2) + 2*x^3*G'(x^2).
a(2^n) = 1 for n>=0.
a(k*2^n) = a(k) for n>=0 and k>0.
a(2^n + 1) = 2^n + 1 for n>=1.
a(2^n - 1) = Product_{k=1..n} (2^k - 1) = A005329(n) for n>0.
a(3*2^n - 1) = Product_{k=1..n} (3*2^k - 1) for n>0.
a(m*2^n - 1) = Product_{k=1..n} (m*2^k - 1) for n>0 and positive odd m.
Limit_{n->oo} Sum_{k=0..2^n} 1/(a(k) * a(2^n-k)) = 3.9409369799444642172...
EXAMPLE
G.f. A(x) = Sum_{n>=0} x^n/a(n) begins:
A(x) = 1/1 + x/1 + x^2/1 + x^3/3 + x^4/1 + x^5/5 + x^6/3 + x^7/21 + x^8/1 + x^9/9 + x^10/5 + x^11/55 + x^12/3 + x^13/39 + x^14/21 + x^15/315 + x^16/1 + x^17/17 + x^18/9 + x^19/171 + x^20/5 + x^21/105 + x^22/55 + x^23/1265 + x^24/3 + x^25/75 + x^26/39 + x^27/1053 + x^28/21 + x^29/609 + x^30/315 + x^31/9765 + x^32/1 + x^33/33 + x^34/17 + x^35/595 + x^36/9 + x^37/333 + x^38/171 + x^39/6669 + x^40/5 + x^41/205 + x^42/105 + x^43/4515 + x^44/55 + x^45/2475 + x^46/1265 + x^47/59455 + x^48/3 + x^49/147 + x^50/75 + x^51/3825 + x^52/39 + x^53/2067 + x^54/1053 + x^55/57915 + x^56/21 + x^57/1197 + x^58/609 + x^59/35931 + x^60/315 + x^61/19215 + x^62/9765 + x^63/615195 + x^64/1 +...+ x^n/a(n) +...
such that A(x) = A(x^2) + Integral A(x^2) dx.
Further,
A'(x) = A(x^2) + 2*x*A(x^4) + 4*x^3*A(x^8) + 8*x^7*A(x^16) + 16*x^15*A(x^32) + 32*x^31*A(x^64) +...+ 2^n * x^(2^n-1) * A( x^(2^(n+1)) ) +...
where A'(x) = A(x^2) + 2*x*A'(x^2).
RELATED SERIES.
A'(x) = 1/1 + 2*x/1 + x^2/1 + 4*x^3/1 + x^4/1 + 2*x^5/1 + x^6/3 + 8*x^7/1 + x^8/1 + 2*x^9/1 + x^10/5 + 4*x^11/1 + x^12/3 + 2*x^13/3 + x^14/21 + 16*x^15/1 + x^16/1 + 2*x^17/1 + x^18/9 + 4*x^19 + x^20/5 + 2*x^21/5 + x^22/55 + 8*x^23/1 + x^24/3 + 2*x^25/3 + x^26/39 + 4*x^27/3 + x^28/21 + 2*x^29/21 + x^30/315 + 32*x^31/1 + x^32/1 +...
Integral A(x^2) dx = x/1 + x^3/3 + x^5/5 + x^7/21 + x^9/9 + x^11/55 + x^13/39 + x^15/315 + x^17/17 + x^19/171 + x^21/105 + x^23/1265 + x^25/75 + x^27/1053 + x^29/609 + x^31/9765 + x^33/33 + x^35/595 + x^37/333 + x^39/6669 + x^41/205 + x^43/4515 + x^45/2475 + x^47/59455 + x^49/147 + x^51/3825 + x^53/2067 + x^55/57915 + x^57/1197 + x^59/35931 + x^61/19215 + x^63/615195 + x^65/65 +...
Also, we may write the g.f. as the series
A(x) = 1 + x + 2*x^2/2! + 2*x^3/3! + 24*x^4/4! + 24*x^5/5! + 240*x^6/6! + 240*x^7/7! + 40320*x^8/8! + 40320*x^9/9! + 725760*x^10/10! + 725760*x^11/11! + 159667200*x^12/12! + 159667200*x^13/13! + 4151347200*x^14/14! + 4151347200*x^15/15! + 20922789888000*x^16/16! + 20922789888000*x^17/17! + 711374856192000*x^18/18! + 711374856192000*x^19/19! + 486580401635328000*x^20/20! + 486580401635328000*x^21/21! + 20436376868683776000*x^22/22! + 20436376868683776000*x^23/23! +...+ n!/a(n) * x^n/n! +...
The terms at positions 2^n - 1 begin:
[1, 1, 3, 21, 315, 9765, 615195, 78129765, 19923090075, ..., A005329(n), ...].
The terms at positions 3*2^n - 1 begin:
[1, 5, 55, 1265, 59455, 5648225, 1078810975, 413184603425, 316912590826975, ...].
PROG
(PARI) {a(n) = my(A=1); for(i=1, #binary(n+1), A = subst(A, x, x^2) + intformal( subst(A, x, x^2) +x*O(x^n)) ); 1/polcoeff(A, n)}
for(n=0, 128, print1(a(n), ", "))
CROSSREFS
Cf. A005329.
Sequence in context: A289094 A171382 A002323 * A365671 A200920 A290534
KEYWORD
nonn,look
AUTHOR
Paul D. Hanna, Nov 05 2017
STATUS
approved