login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068768
Generalized Catalan numbers.
3
1, 1, 12, 150, 1944, 25992, 356832, 5008824, 71629920, 1040509152, 15315578496, 227981324736, 3426473187072, 51929043390720, 792725911280640, 12178706839758720, 188158789025809920, 2921622674591946240
OFFSET
0,3
COMMENTS
a(n) = K(6,6; n)/6 with K(a,b; n) defined in a comment to A068763.
FORMULA
a(n) = (6^n) * p(n, -5/6) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 6*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-24*x*(1-5*x)))/(12*x).
D-finite with recurrence: (n+1)*a(n) = 120*(2-n)*a(n-2) + 12*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(3+3*sqrt(6)) * (12+2*sqrt(6))^n / (6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-24*x*(1-5*x)])/(12*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 04 2002
STATUS
approved