OFFSET
0,3
COMMENTS
a(n) = K(5,5; n)/5 with K(a,b; n) defined in a comment to A068763.
LINKS
Fung Lam, Table of n, a(n) for n = 0..860
FORMULA
a(n) = (5^n) * p(n, -4/5) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 5*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-20*x*(1-4*x)))/(10*x).
(n+1)*a(n) = 80*(2-n)*a(n-2) + 10*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(10+10*sqrt(5)) * (10+2*sqrt(5))^n / (10*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014
Equivalently, a(n) ~ 2^(2*n) * 5^((n-1)/2) * phi^(n + 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-20*x*(1-4*x)])/(10*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 04 2002
STATUS
approved