login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198956
q-expansion of modular form psi_0^4/t_{3B}.
3
0, 1, 9, 27, 73, 126, 243, 344, 585, 729, 1134, 1332, 1971, 2198, 3096, 3402, 4681, 4914, 6561, 6860, 9198, 9288, 11988, 12168, 15795, 15751, 19782, 19683, 25112, 24390, 30618, 29792, 37449, 35964, 44226, 43344, 53217, 50654, 61740, 59346, 73710, 68922, 83592
OFFSET
0,3
COMMENTS
psi_0 is given in A004016, t_{3B} in A198955.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
FORMULA
Expansion of a(q) * (c(q) / 3)^3 in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, Aug 23 2012
Expansion of eta(q^3)^8 * (1 + 9 * (eta(q^9) / eta(q))^3) in powers of q. - Michael Somos, Aug 23 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = (1/3) (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A215711. - Michael Somos, Aug 23 2012
Convolution of A004016 and A106402. - Michael Somos, Aug 23 2012
Conjecture: Multiplicative with a(3^e) = 3^e, a(p^e) = sigma_3(p^e) for prime p <> 3. - Andrew Howroyd, Aug 08 2018
EXAMPLE
G.f. = q + 9*q^2 + 27*q^3 + 73*q^4 + 126*q^5 + 243*q^6 + 344*q^7 + 585*q^8 + 729*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q^3]^8 (1 + 9 q (QPochhammer[ q^9] / QPochhammer[ q])^3), {q, 0, n}]; (* Michael Somos, Dec 27 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A)^8 * (1 + 9 * x * (eta(x^9 + A) / eta(x + A))^3), n))}; /* Michael Somos, Aug 23 2012 */
(Sage) ModularForms( Gamma0(3), 4, prec=43).1; # Michael Somos, May 23 2014
(Magma) Basis( ModularForms( Gamma0(3), 4), 43)[2]; /* Michael Somos, Dec 27 2014 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 01 2011
STATUS
approved