login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319085 a(n) = Sum_{k=1..n} k^2*tau(k), where tau is A000005. 5
1, 9, 27, 75, 125, 269, 367, 623, 866, 1266, 1508, 2372, 2710, 3494, 4394, 5674, 6252, 8196, 8918, 11318, 13082, 15018, 16076, 20684, 22559, 25263, 28179, 32883, 34565, 41765, 43687, 49831, 54187, 58811, 63711, 75375, 78113, 83889, 89973, 102773, 106135 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

In general, for m>=1, Sum_{k=1..n} k^m * tau(k) = Sum_{k=1..n} k^m * (Bernoulli(m+1, floor(1 + n/k)) - Bernoulli(m+1, 0)) / (m+1), where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 08 2018

LINKS

Table of n, a(n) for n=1..41.

FORMULA

a(n) ~ n^3 * (log(n) + 2*gamma - 1/3)/3, where gamma is the Euler-Mascheroni constant A001620.

a(n) = Sum_{k=1..n} k^2 * Bernoulli(3, floor(1 + n/k)) / 3, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 08 2018

a(n) = Sum_{k=1..n} Sum_{i=1..floor(n/k)} i^2 * k^2. - Wesley Ivan Hurt, Nov 26 2020

MATHEMATICA

Accumulate[Table[k^2*DivisorSigma[0, k], {k, 1, 50}]]

PROG

(PARI) a(n) = sum(k=1, n, k^2*numdiv(k)); \\ Michel Marcus, Sep 12 2018

(PARI) f(n) = n*(n+1)*(2*n+1)/6; \\ A000330

a(n) = 2*sum(k=1, sqrtint(n), k^2 * f(n\k)) - f(sqrtint(n))^2; \\ Daniel Suteu, Nov 26 2020

CROSSREFS

Cf. A000005, A006218, A034714, A143127.

Sequence in context: A328408 A198956 A110205 * A211531 A264959 A053702

Adjacent sequences:  A319082 A319083 A319084 * A319086 A319087 A319088

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Sep 10 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 03:53 EDT 2021. Contains 346283 sequences. (Running on oeis4.)