The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319085 a(n) = Sum_{k=1..n} k^2*tau(k), where tau is A000005. 7
 1, 9, 27, 75, 125, 269, 367, 623, 866, 1266, 1508, 2372, 2710, 3494, 4394, 5674, 6252, 8196, 8918, 11318, 13082, 15018, 16076, 20684, 22559, 25263, 28179, 32883, 34565, 41765, 43687, 49831, 54187, 58811, 63711, 75375, 78113, 83889, 89973, 102773, 106135 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In general, for m>=1, Sum_{k=1..n} k^m * tau(k) = Sum_{k=1..n} k^m * (Bernoulli(m+1, floor(1 + n/k)) - Bernoulli(m+1, 0)) / (m+1), where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 08 2018 LINKS Table of n, a(n) for n=1..41. FORMULA a(n) ~ n^3 * (log(n) + 2*gamma - 1/3)/3, where gamma is the Euler-Mascheroni constant A001620. a(n) = Sum_{k=1..n} k^2 * Bernoulli(3, floor(1 + n/k)) / 3, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 08 2018 a(n) = Sum_{k=1..n} Sum_{i=1..floor(n/k)} i^2 * k^2. - Wesley Ivan Hurt, Nov 26 2020 MATHEMATICA Accumulate[Table[k^2*DivisorSigma[0, k], {k, 1, 50}]] PROG (PARI) a(n) = sum(k=1, n, k^2*numdiv(k)); \\ Michel Marcus, Sep 12 2018 (PARI) f(n) = n*(n+1)*(2*n+1)/6; \\ A000330 a(n) = 2*sum(k=1, sqrtint(n), k^2 * f(n\k)) - f(sqrtint(n))^2; \\ Daniel Suteu, Nov 26 2020 (Python) from math import isqrt def A319085(n): return (-((s:=isqrt(n))*(s+1)*(2*s+1))**2//12 + sum(k**2*(q:=n//k)*(q+1)*(2*q+1) for k in range(1, s+1)))//3 # Chai Wah Wu, Oct 21 2023 CROSSREFS Cf. A000005, A006218, A034714, A143127. Sequence in context: A328408 A198956 A110205 * A211531 A264959 A370870 Adjacent sequences: A319082 A319083 A319084 * A319086 A319087 A319088 KEYWORD nonn AUTHOR Vaclav Kotesovec, Sep 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 23:39 EDT 2024. Contains 372608 sequences. (Running on oeis4.)