The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319087 a(n) = Sum_{k=1..n} k^2*phi(k), where phi is the Euler totient function A000010. 8
1, 5, 23, 55, 155, 227, 521, 777, 1263, 1663, 2873, 3449, 5477, 6653, 8453, 10501, 15125, 17069, 23567, 26767, 32059, 36899, 48537, 53145, 65645, 73757, 86879, 96287, 119835, 127035, 155865, 172249, 194029, 212525, 241925, 257477, 306761, 332753, 369257 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Comment from N. J. A. Sloane, Mar 22 2020: (Start)
Theorem: Sum_{ 1<=i<=n, 1<=j<=n, gcd(i,j)=1 } i*j = a(n).
Proof: From the Apostol reference we know that:
Sum_{ 1<=i<=n, gcd(i,n)=1 } i = n*phi(n)/2 (see A023896).
We use induction on n. The result is true for n=1.
Then a(n) - a(n-1) = 2*Sum_{ i=1..n-1, gcd(i,n)=1 } n*i = n^2*phi(n). QED (End)
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 16, the function phi_1(n).
LINKS
FORMULA
a(n) ~ 3*n^4 / (2*Pi^2).
MATHEMATICA
Accumulate[Table[k^2*EulerPhi[k], {k, 1, 50}]]
PROG
(PARI) a(n) = sum(k=1, n, k^2*eulerphi(k)); \\ Michel Marcus, Sep 12 2018
CROSSREFS
Sequence in context: A053664 A186030 A092544 * A098499 A075565 A075707
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 10 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 01:34 EDT 2024. Contains 372900 sequences. (Running on oeis4.)