login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319089
a(n) = tau(n)^3, where tau is A000005.
2
1, 8, 8, 27, 8, 64, 8, 64, 27, 64, 8, 216, 8, 64, 64, 125, 8, 216, 8, 216, 64, 64, 8, 512, 27, 64, 64, 216, 8, 512, 8, 216, 64, 64, 64, 729, 8, 64, 64, 512, 8, 512, 8, 216, 216, 64, 8, 1000, 27, 216, 64, 216, 8, 512, 64, 512, 64, 64, 8, 1728, 8, 64, 216, 343
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Divisor Function.
FORMULA
Multiplicative with a(p^e) = (e+1)^3. - Amiram Eldar, Dec 31 2022
a(n) = Sum_{d1|n} Sum_{d2|n} tau(d1*d2). - Ridouane Oudra, Mar 07 2023
From Vaclav Kotesovec, Mar 09 2023: (Start)
Dirichlet g.f.: Product_{p prime} p^(2*s) * (1 + 4*p^s + p^(2*s)) / (p^s - 1)^4.
Dirichlet g.f.: zeta(s)^8 * Product_{p prime} (1 - 9/p^(2*s) + 16/p^(3*s) - 9/p^(4*s) + 1/p^(6*s)), (with a product that converges for s=1). (End)
MAPLE
with(numtheory): seq(tau(n)^3, n=1..100); # Ridouane Oudra, Mar 07 2023
MATHEMATICA
DivisorSigma[0, Range[100]]^3
PROG
(PARI) a(n) = numdiv(n)^3; \\ Altug Alkan, Sep 10 2018
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X + X^2)/(1 - X)^4)[n], ", ")) \\ Vaclav Kotesovec, Mar 09 2023
CROSSREFS
Cf. A000005, A006218, A035116, A061502, A318755 (partial sums).
Sequence in context: A037018 A246310 A318542 * A003873 A077110 A333625
KEYWORD
nonn,easy,mult
AUTHOR
Vaclav Kotesovec, Sep 10 2018
STATUS
approved