login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319092
Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1, k) + 2*T(n-1, k-1) + 3*T(n-1, k-2) + 4*T(n-1, k-3) + 5*T(n-1, k-4) + 6*T(n-1, k-5) for k = 0..5*n; T(n,k)=0 for n or k < 0.
2
1, 1, 2, 3, 4, 5, 6, 1, 4, 10, 20, 35, 56, 70, 76, 73, 60, 36, 1, 6, 21, 56, 126, 252, 441, 684, 954, 1204, 1365, 1344, 1169, 882, 540, 216, 1, 8, 36, 120, 330, 792, 1688, 3232, 5619, 8944, 13088, 17568, 21642, 24456, 25236, 23528, 19489, 14232, 8856, 4320, 1296, 1, 10, 55, 220, 715, 2002, 4970
OFFSET
0,3
COMMENTS
Row n gives the coefficients in the expansion of (1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5)^n, where n is a nonnegative integer.
The row sum is s(n)=21^n (see A009965).
In the center-justified triangle, the sum of numbers along "first layer" skew diagonals pointing top-right are the coefficients in the expansion of 1/(1 - x - 2*x^2 -3*x^3 - 4*x^4 - 5*x^5 - 6*x^6) and the sum of numbers along "first layer" skew diagonals pointing top-left are the coefficients in the expansion of 1/(1 - 6*x - 5*x^2 - 4*x^3 - 3*x^4 - 2*x^5 - x^6), see links.
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
FORMULA
T(n,k) = Sum_{i=0..k} Sum_{j=2*i..k} Sum_{q=3*i..k} Sum_{r=4*i..k}(f) for k=0..5*n; f=((2^(k + q - 2*r)*3^(j + r - 2*q)*4^(i + q - 2*j)*5^(j - 2*i)*6^i*n!)/((n - k + r)!*(k + q - 2*r)!*(j + r - 2*q)!*(i + q - 2*j)!*(j - 2*i)!*i!) ); f=0 for (n - k + r)<0 or (k + q - 2*r)<0; (j + r - 2*q)<0 or (i + q - 2*j) <0 or (j - 2*i)<0. A novel formula proven by Shara Lalo and Zagros Lalo. Also see formula in Links section.
G.f.: 1/(1 - x*t- 2*x^2*t - 3*x^3*t - 4*x^4*t - 5*x^5*t - 6*x^6*t).
EXAMPLE
Triangle begins:
1;
1, 2, 3, 4, 5, 6;
1, 4, 10, 20, 35, 56, 70, 76, 73, 60, 36;
1, 6, 21, 56, 126, 252, 441, 684, 954, 1204, 1365, 1344, 1169, 882, 540, 216;
...
MATHEMATICA
t[n_, k_] := t[n, k] = Sum[(2^(k + q - 2*r)*3^(j + r - 2*q)*4^(i + q - 2*j)*5^(j - 2*i)*6^i*n!)/((n - k + r)!*(k + q - 2*r)!*(j + r - 2*q)!*(i + q -2*j)!*(j - 2*i)!*i!), {i, 0, k}, {j, 2*i, k}, {q, 3*i, k}, {r, 4*i, k}]; Flatten[Table[t[n, k], {n, 0, 5}, {k, 0, 5 n}]]
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 1, k - 1] + 3 t[n - 1, k - 2] + 4 t[n - 1, k - 3] + 5 t[n - 1, k - 4] + 6 t[n - 1, k - 5]]; Table[t[n, k], {n, 0, 5}, {k, 0, 5 n} ] // Flatten
PROG
(PARI) row(n) = Vecrev((1+2*x+3*x^2+4*x^3+5*x^4+6*x^5)^n);
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Oct 15 2018
CROSSREFS
KEYWORD
tabf,nonn,easy
AUTHOR
Shara Lalo, Oct 01 2018
STATUS
approved