OFFSET
0,5
COMMENTS
Row n gives the coefficients in the expansion of (1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n, where n is a nonnegative integer. The row sum at row n is s(n) = 10^n. In the center-justified triangle, the sum of numbers along "first layer" skew diagonals pointing top-right are the coefficients in the expansion of 1/(1 - x - x^2 - x^3 - 3*x^4 - x^5 - x^6 - x^7 - x^8) and the sum of numbers along "first layer" skew diagonals pointing top-left are the coefficients in the expansion of 1/(1 - x - x^2 - x^3 - x^4 - 3*x^5 - x^6 - x^7 - x^8), see links.
Note: Coefficients in expansion of (1 + x + ... + x^7)^n is given in A171890 (Octonomial coefficient array).
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} Sum_{j=2*i..k} Sum_{q=3*i..k} Sum_{r=4*i..k} Sum_{p=5*i..k} Sum_{d=6*i..k}(f) for k=0..7*n; f= (3^(q - 2*r + p)*n!)/((n + d - k)!*(k + p - 2*d)!*(d + r - 2*p)!*(q + p - 2*r)!*(j + r - 2*q)!*(i + q - 2*j)!*(j - 2*i)!*i!); f=0 for (n + d - k)<0 or (k + p - 2*d)<0 or (d + r - 2*p)<0 or (q + p - 2*r)<0 or (j + r - 2*q)<0 or (i + q - 2*j)<0 or (j - 2*i)<0. A novel formula proven by Shara Lalo and Zagros Lalo. Also see formula in Links section.
G.f.: 1/(1 - t*x - t*x^2 - t*x^3 - 3*t*x^4 - t*x^5 - t*x^6 - t*x^7 - t*x^8).
EXAMPLE
Triangle begins:
1;
1, 1, 1, 3, 1, 1, 1, 1;
1, 2, 3, 8, 9, 10, 15, 12, 11, 10, 9, 4, 3, 2, 1;
1, 3, 6, 16, 27, 39, 64, 78, 90, 108, 108, 102, 94, 84, 60, 46, 33, 21, 10, 6, 3, 1;
...
MATHEMATICA
f[n_] := CoefficientList[(1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n, x] ; Join @@ Table[f[k], {k, 0, 5}] // Flatten (* Amiram Eldar, Dec 07 2018 *)
PROG
(PARI) row(n) = Vecrev((1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n);
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Oct 15 2018
(Maxima) T(n, k) := ratcoef((1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n, x, k)$
create_list(T(n, k), n, 0, 10, k, 0, 7*n); /* Franck Maminirina Ramaharo, Nov 27 2018 */
CROSSREFS
KEYWORD
tabf,nonn,easy
AUTHOR
Shara Lalo, Oct 01 2018
STATUS
approved