login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319095
Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) + 3*T(n-1, k-3) + T(n-1, k-4) + T(n-1, k-5) + T(n-1, k-6) + T(n-1, k-7) for k = 0..7*n; T(n,k) = 0 for n or k < 0.
3
1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 3, 8, 9, 10, 15, 12, 11, 10, 9, 4, 3, 2, 1, 1, 3, 6, 16, 27, 39, 64, 78, 90, 108, 108, 102, 94, 84, 60, 46, 33, 21, 10, 6, 3, 1, 1, 4, 10, 28, 59, 104, 188, 288, 401, 556, 686, 796, 899, 944, 928, 880, 803, 668, 542, 420, 305, 200, 132, 80, 43, 20, 10, 4, 1
OFFSET
0,5
COMMENTS
Row n gives the coefficients in the expansion of (1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n, where n is a nonnegative integer. The row sum at row n is s(n) = 10^n. In the center-justified triangle, the sum of numbers along "first layer" skew diagonals pointing top-right are the coefficients in the expansion of 1/(1 - x - x^2 - x^3 - 3*x^4 - x^5 - x^6 - x^7 - x^8) and the sum of numbers along "first layer" skew diagonals pointing top-left are the coefficients in the expansion of 1/(1 - x - x^2 - x^3 - x^4 - 3*x^5 - x^6 - x^7 - x^8), see links.
Note: Coefficients in expansion of (1 + x + ... + x^7)^n is given in A171890 (Octonomial coefficient array).
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
FORMULA
T(n,k) = Sum_{i=0..k} Sum_{j=2*i..k} Sum_{q=3*i..k} Sum_{r=4*i..k} Sum_{p=5*i..k} Sum_{d=6*i..k}(f) for k=0..7*n; f= (3^(q - 2*r + p)*n!)/((n + d - k)!*(k + p - 2*d)!*(d + r - 2*p)!*(q + p - 2*r)!*(j + r - 2*q)!*(i + q - 2*j)!*(j - 2*i)!*i!); f=0 for (n + d - k)<0 or (k + p - 2*d)<0 or (d + r - 2*p)<0 or (q + p - 2*r)<0 or (j + r - 2*q)<0 or (i + q - 2*j)<0 or (j - 2*i)<0. A novel formula proven by Shara Lalo and Zagros Lalo. Also see formula in Links section.
G.f.: 1/(1 - t*x - t*x^2 - t*x^3 - 3*t*x^4 - t*x^5 - t*x^6 - t*x^7 - t*x^8).
EXAMPLE
Triangle begins:
1;
1, 1, 1, 3, 1, 1, 1, 1;
1, 2, 3, 8, 9, 10, 15, 12, 11, 10, 9, 4, 3, 2, 1;
1, 3, 6, 16, 27, 39, 64, 78, 90, 108, 108, 102, 94, 84, 60, 46, 33, 21, 10, 6, 3, 1;
...
MATHEMATICA
f[n_] := CoefficientList[(1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n, x] ; Join @@ Table[f[k], {k, 0, 5}] // Flatten (* Amiram Eldar, Dec 07 2018 *)
PROG
(PARI) row(n) = Vecrev((1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n);
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Oct 15 2018
(Maxima) T(n, k) := ratcoef((1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n, x, k)$
create_list(T(n, k), n, 0, 10, k, 0, 7*n); /* Franck Maminirina Ramaharo, Nov 27 2018 */
CROSSREFS
Cf. A171890.
Sequence in context: A066636 A137578 A200146 * A109390 A130046 A349509
KEYWORD
tabf,nonn,easy
AUTHOR
Shara Lalo, Oct 01 2018
STATUS
approved