login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349509
a(n) is the denominator of binomial(n^3 + 6*n^2 - 6*n + 2, n^3 - 1)/n^3.
9
1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1
OFFSET
1,3
COMMENTS
a(n) is the denominator of an upper bound of the number of vertices of the polytope of the n X n X n stochastic tensors, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Chang et al. and Zhang et al.).
Conjecture: 1 and 3 are the only terms that appear in this sequence.
This conjecture is correct, see formula. - Kevin Ryde, Jul 01 2023
LINKS
Haixia Chang, Vehbi Emrah Paksoy, and Fuzhen Zhang, Polytopes of Stochastic Tensors, Ann. Funct. Anal. 7(3): 386-393 (August 2016). arXiv:1608.03203 [math.CO], 2016. See p. 6.
Fuzhen Zhang and Xiao-Dong Zhang, Comparison of the upper bounds for the extreme points of the polytopes of line-stochastic tensors, arXiv:2110.12337 [math.CO], 2021. See p. 3.
FORMULA
A349508(n)/a(n) <= A349510(n) < A349511(n) < A349512(n) (see Corollary 7 in Zhang et al., 2021).
A349508(n)/a(n) ~ 2^(-4 + 6*n - 6*n^2)*3^(-7/2 + 6*n - 6*n^2)*e^(-75 + 233/n + 18*n + 6*n^2)*n^(-1 - 6*n + 6*n^2)/sqrt(Pi).
a(n) = 1 if n=1 or any x[i] + y[i] >= 3 where x and y are the ternary digits of n^3 = Sum x[i]*3^i and 6*n^2 - 6*n + 3 = Sum y[i]*3^i; and a(n) = 3 otherwise. - Kevin Ryde, Jul 01 2023
MATHEMATICA
a[n_]:=Denominator[Binomial[n^3+6n^2-6n+2, n^3-1]/n^3]; Array[a, 90]
PROG
(Python)
from math import gcd, comb
def A349509(n): return n**3//gcd(comb(n*(n*(n + 6) - 6) + 2, 6*n*(n-1)+3), n**3) # Chai Wah Wu, Dec 06 2021
(PARI) \\ See links.
CROSSREFS
Cf. A349506, A349507, A349508 (numerators), A349510, A349511, A349512.
Cf. A363739 (run lengths), A349929 (indices of 3's).
Sequence in context: A319095 A109390 A130046 * A378645 A262619 A166123
KEYWORD
nonn,frac,easy
AUTHOR
Stefano Spezia, Nov 20 2021
STATUS
approved