login
A166123
If n is prime, a(n) = 1; otherwise, a(n) is gcd(n, d) where d is the denominator of the (n-1)-th Bernoulli number.
1
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 15, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 3, 1
OFFSET
1,9
LINKS
FORMULA
a(n) = A166120(n)/ A050932(n-1).
MATHEMATICA
Table[If[PrimeQ[n], 1, GCD[n, Denominator[BernoulliB[n-1]]]], {n, 100}] (* Harvey P. Dale, Sep 07 2017 *)
PROG
(PARI) a(n)=if(isprime(n), 1, gcd(denominator(bernfrac(n-1)), n)) \\ Charles R Greathouse IV, Jun 20 2011
(PARI) a(n)=my(b=bernfrac(n-1)); denominator(b)/denominator(b*n)/if(isprime(n), n, 1) \\ Charles R Greathouse IV, Jun 20 2011
(PARI) a(n)=if(isprime(n), 1, my(b=bernfrac(n-1)); denominator(b)/denominator(b*n)) \\ Charles R Greathouse IV, Jun 20 2011
CROSSREFS
Sequence in context: A349509 A378645 A262619 * A272334 A014491 A379127
KEYWORD
nonn
AUTHOR
Paul Curtz, Oct 07 2009
STATUS
approved