|
|
A349512
|
|
a(n) = binomial(n^3 + 3*n^2 - 3*n + 1, n^3).
|
|
6
|
|
|
1, 2, 6435, 4154246671960, 5397234129638871133346507775, 80240648651400365471854502514501453704175376562496, 54198670627270688013781273396239242514947489935351300645194042280183395324517200
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is a sharp upper bound of the number of vertices of the polytope of the n X n X n stochastic tensors, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Zhang et al.).
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ C*3^(3(n - n^2))*exp(3*(3*n/2 + n^2))*n^(3(-n + n^2)), where C = e^(-15)/sqrt(54*Pi).
|
|
MATHEMATICA
|
a[n_]:=Binomial[n^3+3n^2-3n+1, n^3]; Array[a, 8, 0]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|