login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107022
Primes p such that 2p+1, 4p+3, 6p+5, 8p+7, 10p+9 are all primes.
5
2, 6449, 210209, 244589, 528509, 810539, 968729, 985109, 1316699, 1551899, 1743419, 2832629, 4094999, 4328459, 5608409, 6036869, 7077419, 7939829, 8176979, 8673569, 8789279, 9080189, 9797279, 10122419, 10309889, 10487969
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[700000]], And@@PrimeQ[{2#+1, 4#+3, 6#+5, 8#+7, 10#+9}]&] (* Harvey P. Dale, Jun 19 2013 *)
Select[Prime[Range[700000]], AllTrue[Table[2n #+2n-1, {n, 5}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 22 2018 *)
PROG
(Magma) [p: p in PrimesUpTo(100000000)| IsPrime(2*p+1) and IsPrime(4*p+3) and IsPrime(6*p+5) and IsPrime(8*p+7)and IsPrime(10*p+9)]; // Vincenzo Librandi, Nov 13 2010
CROSSREFS
Cf. A107024: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11, 14p+13 all prime; A107023: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11 all prime; A107021: p, 2p+1, 4p+3, 6p+5, 8p+7 all prime;A107020: p, 2p+1, 4p+3, 6p+5 all prime; A007700: p, 2p+1, 4p+3 all prime; A005384: p, 2p+1 prime (p = Sophie Germain primes).
Sequence in context: A196750 A349512 A107021 * A330901 A285693 A112720
KEYWORD
nonn
AUTHOR
Zak Seidov, May 09 2005
EXTENSIONS
More terms from Vincenzo Librandi, Apr 01 2010
STATUS
approved