login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107025 Binomial transform of the expansion of 1/(1-x^5-x^6). 0
1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 464, 938, 1808, 3459, 6826, 14198, 30960, 69143, 154433, 340006, 734561, 1561313, 3286129, 6900097, 14542101, 30855957, 65908862, 141395972, 303745077, 651763377, 1395140215, 2978858672 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
In general, the binomial transform of 1/(1-x^r-x^(r+1)) is given by (1-x)^r/((1-x)^(r+1)-x^r), with a(n)=sum{k=0..floor((n+1)/2), binomial(n+k,(r+1)k)}= sum{k=0..floor((r+1)n/r), binomial(k,(r+1)n-r*k)}.
LINKS
FORMULA
G.f.: (1-x)^5/((1-x)^6-x^5); a(n)=6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+7a(n-5)-a(n-6); a(n)=sum{k=0..floor((n+1)/2), binomial(n+k, 6k)}; a(n)=sum{k0..floor(6n/5), binomial(k, 6n-5k)}.
CROSSREFS
Sequence in context: A293169 A306847 A364523 * A212385 A333882 A365760
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 09 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 19:28 EST 2023. Contains 367419 sequences. (Running on oeis4.)