|
|
A107025
|
|
Binomial transform of the expansion of 1/(1-x^5-x^6).
|
|
0
|
|
|
1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 464, 938, 1808, 3459, 6826, 14198, 30960, 69143, 154433, 340006, 734561, 1561313, 3286129, 6900097, 14542101, 30855957, 65908862, 141395972, 303745077, 651763377, 1395140215, 2978858672
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
In general, the binomial transform of 1/(1-x^r-x^(r+1)) is given by (1-x)^r/((1-x)^(r+1)-x^r), with a(n)=sum{k=0..floor((n+1)/2), binomial(n+k,(r+1)k)}= sum{k=0..floor((r+1)n/r), binomial(k,(r+1)n-r*k)}.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1-x)^5/((1-x)^6-x^5); a(n)=6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+7a(n-5)-a(n-6); a(n)=sum{k=0..floor((n+1)/2), binomial(n+k, 6k)}; a(n)=sum{k0..floor(6n/5), binomial(k, 6n-5k)}.
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|