login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107025
Binomial transform of the expansion of 1/(1-x^5-x^6).
11
1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 464, 938, 1808, 3459, 6826, 14198, 30960, 69143, 154433, 340006, 734561, 1561313, 3286129, 6900097, 14542101, 30855957, 65908862, 141395972, 303745077, 651763377, 1395140215, 2978858672
OFFSET
0,6
COMMENTS
In general, the binomial transform of 1/(1-x^r-x^(r+1)) is given by (1-x)^r/((1-x)^(r+1)-x^r), with a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k,(r+1)k) = Sum_{k=0..floor((r+1)n/r)} binomial(k,(r+1)n-r*k).
Number of compositions of 6*n into parts 5 and 6. - Seiichi Manyama, Jun 22 2024
FORMULA
G.f.: (1-x)^5/((1-x)^6-x^5).
a(n) = 6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+7a(n-5)-a(n-6).
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, 6k).
a(n) = Sum_{k=0..floor(6n/5)} binomial(k, 6n-5k).
a(n) = A017837(6*n). - Seiichi Manyama, Jun 22 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 09 2005
STATUS
approved