login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107023
Primes p such that 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11 are all primes.
5
4094999, 9080189, 10957169, 11148899, 15917579, 19422059, 37267229, 37622339, 58680929, 63196349, 64595369, 66383519, 108463739, 177109379, 186977699, 189997079, 196068179, 228875849, 251891639, 261703889, 271031669, 310143959
OFFSET
1,1
LINKS
EXAMPLE
a(1) = p = 4094999 is a term because numbers i*p+(i-1), i=2(2)12 8189999,16379999,24569999,32759999,40949999,49139999 are all primes.
MATHEMATICA
s={}; Do[p=Prime[i]; If[Union[PrimeQ[Table[i*p+(i-1), {i, 2, 12, 2}]]]=={True}, AppendTo[s, p]], {i, 289435, 1236230}]; s
With[{t=Table[2n #+(2n-1), {n, 6}]}, Select[Prime[ Range[ 168*10^5]], AllTrue[ t, PrimeQ]&]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 14 2018 *)
CROSSREFS
Cf. A107024: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11, 14p+13 all prime; A107022: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9 all prime; A107021: p, 2p+1, 4p+3, 6p+5, 8p+7 all prime;A107020: p, 2p+1, 4p+3, 6p+5 all prime; A007700: p, 2p+1, 4p+3 all prime; A005384: p, 2p+1 prime (p = Sophie Germain primes).
Sequence in context: A191346 A307846 A278199 * A107024 A250862 A345615
KEYWORD
nonn
AUTHOR
Zak Seidov, May 09 2005, Mar 08 2007
STATUS
approved