login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319086
a(n) = Sum_{k=1..n} k^2*sigma(k), where sigma is A000203.
4
1, 13, 49, 161, 311, 743, 1135, 2095, 3148, 4948, 6400, 10432, 12798, 17502, 22902, 30838, 36040, 48676, 55896, 72696, 86808, 104232, 116928, 151488, 170863, 199255, 228415, 272319, 297549, 362349, 393101, 457613, 509885, 572309, 631109, 749045, 801067
OFFSET
1,2
COMMENTS
In general, for m>=1, Sum_{k=1..n} k^m * sigma(k) = Sum_{k=1..n} k^(m+1) * (Bernoulli(m+1, floor(1 + n/k)) - Bernoulli(m+1, 0)) / (m+1), where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 08 2018
LINKS
FORMULA
a(n) ~ Pi^2 * n^4/24.
a(n) = Sum_{k=1..n} ((k/2) * floor(n/k) * floor(1 + n/k))^2. - Daniel Suteu, Nov 07 2018
MATHEMATICA
Accumulate[Table[k^2*DivisorSigma[1, k], {k, 1, 50}]]
PROG
(PARI) a(n) = sum(k=1, n, k^2*sigma(k)); \\ Michel Marcus, Sep 12 2018
(Python)
def A319086(n): return sum((k*(m:=n//k)*(m+1)>>1)**2 for k in range(1, n+1)) # Chai Wah Wu, Oct 20 2023
(Python)
from math import isqrt
def A319086(n): return ((-((s:=isqrt(n))*(s+1))**3*(2*s+1)>>1) + sum(k**2*(q:=n//k)*(q+1)*(2*k*(2*q+1)+3*q*(q+1)) for k in range(1, s+1)))//12 # Chai Wah Wu, Oct 21 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 10 2018
STATUS
approved