The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319086 a(n) = Sum_{k=1..n} k^2*sigma(k), where sigma is A000203. 4
1, 13, 49, 161, 311, 743, 1135, 2095, 3148, 4948, 6400, 10432, 12798, 17502, 22902, 30838, 36040, 48676, 55896, 72696, 86808, 104232, 116928, 151488, 170863, 199255, 228415, 272319, 297549, 362349, 393101, 457613, 509885, 572309, 631109, 749045, 801067 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
In general, for m>=1, Sum_{k=1..n} k^m * sigma(k) = Sum_{k=1..n} k^(m+1) * (Bernoulli(m+1, floor(1 + n/k)) - Bernoulli(m+1, 0)) / (m+1), where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 08 2018
LINKS
FORMULA
a(n) ~ Pi^2 * n^4/24.
a(n) = Sum_{k=1..n} ((k/2) * floor(n/k) * floor(1 + n/k))^2. - Daniel Suteu, Nov 07 2018
MATHEMATICA
Accumulate[Table[k^2*DivisorSigma[1, k], {k, 1, 50}]]
PROG
(PARI) a(n) = sum(k=1, n, k^2*sigma(k)); \\ Michel Marcus, Sep 12 2018
(Python)
def A319086(n): return sum((k*(m:=n//k)*(m+1)>>1)**2 for k in range(1, n+1)) # Chai Wah Wu, Oct 20 2023
(Python)
from math import isqrt
def A319086(n): return ((-((s:=isqrt(n))*(s+1))**3*(2*s+1)>>1) + sum(k**2*(q:=n//k)*(q+1)*(2*k*(2*q+1)+3*q*(q+1)) for k in range(1, s+1)))//12 # Chai Wah Wu, Oct 21 2023
CROSSREFS
Sequence in context: A009951 A274974 A251142 * A146287 A289999 A147346
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 10 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 15:23 EDT 2024. Contains 372738 sequences. (Running on oeis4.)