login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} k^2*sigma(k), where sigma is A000203.
4

%I #27 Oct 21 2023 17:21:52

%S 1,13,49,161,311,743,1135,2095,3148,4948,6400,10432,12798,17502,22902,

%T 30838,36040,48676,55896,72696,86808,104232,116928,151488,170863,

%U 199255,228415,272319,297549,362349,393101,457613,509885,572309,631109,749045,801067

%N a(n) = Sum_{k=1..n} k^2*sigma(k), where sigma is A000203.

%C In general, for m>=1, Sum_{k=1..n} k^m * sigma(k) = Sum_{k=1..n} k^(m+1) * (Bernoulli(m+1, floor(1 + n/k)) - Bernoulli(m+1, 0)) / (m+1), where Bernoulli(n,x) are the Bernoulli polynomials. - _Daniel Suteu_, Nov 08 2018

%H Seiichi Manyama, <a href="/A319086/b319086.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) ~ Pi^2 * n^4/24.

%F a(n) = Sum_{k=1..n} ((k/2) * floor(n/k) * floor(1 + n/k))^2. - _Daniel Suteu_, Nov 07 2018

%t Accumulate[Table[k^2*DivisorSigma[1, k], {k, 1, 50}]]

%o (PARI) a(n) = sum(k=1, n, k^2*sigma(k)); \\ _Michel Marcus_, Sep 12 2018

%o (Python)

%o def A319086(n): return sum((k*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # _Chai Wah Wu_, Oct 20 2023

%o (Python)

%o from math import isqrt

%o def A319086(n): return ((-((s:=isqrt(n))*(s+1))**3*(2*s+1)>>1) + sum(k**2*(q:=n//k)*(q+1)*(2*k*(2*q+1)+3*q*(q+1)) for k in range(1,s+1)))//12 # _Chai Wah Wu_, Oct 21 2023

%Y Cf. A000203, A024916, A143128.

%K nonn

%O 1,2

%A _Vaclav Kotesovec_, Sep 10 2018