login
A098499
Number of squares on infinite half chessboard at <=n knight moves from a fixed point on the diagonal.
4
1, 5, 23, 57, 109, 169, 246, 334, 439, 555, 688, 832, 993, 1165, 1354, 1554, 1771, 1999, 2244, 2500, 2773, 3057, 3358, 3670, 3999, 4339, 4696, 5064, 5449, 5845, 6258, 6682, 7123, 7575, 8044, 8524, 9021, 9529, 10054, 10590, 11143, 11707, 12288, 12880, 13489
OFFSET
0,2
FORMULA
a(n) = (1/4) [28n^2 - 6n + 9 + 3(-1)^n], for n>3.
G.f.: -(3*x^7-x^6-8*x^5+4*x^4+13*x^3+13*x^2+3*x+1) / ((x-1)^3*(x+1)). - Colin Barker, Jul 14 2013
EXAMPLE
5 squares are reachable after 1 move, from these you can reach 18 new squares more, so a(1)=5, a(2)=23.
CROSSREFS
Equals A098498(n) - A052938(n-4), n>3.
See A018836 (unbounded), A098498 (halfplane), A098500 (quadrant), A098501 (octant).
Sequence in context: A186030 A092544 A319087 * A075565 A075707 A126420
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Sep 15 2004
EXTENSIONS
More terms from Colin Barker, Jul 14 2013
STATUS
approved