The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075565 Numbers n such that sopf(n) = sopf(n-1) + sopf(n-2), where sopf(x) = sum of the distinct prime factors of x. 15
 5, 23, 58, 901, 1552, 1921, 4195, 6280, 10858, 19649, 20385, 32017, 63657, 65704, 83272, 84120, 86242, 105571, 145238, 181845, 271329, 271742, 316711, 322954, 331977, 345186, 379660, 381431, 409916, 424504, 490256, 524477, 542566, 550272, 561661, 565217, 566560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..371 from G. C. Greubel) EXAMPLE The sum of the distinct prime factors of 23 is 23; the sum of the distinct prime factors of 22 = 2 * 11 is 2 + 11 = 13; the sum of the distinct prime factors of 21 = 3 * 7 is 3 + 7 = 10; Hence 23 belongs to the sequence. MATHEMATICA p[n_] := Apply[Plus, Transpose[FactorInteger[n]][[1]]]; Select[Range[4, 10^5], p[ # - 1] + p[ # - 2] == p[ # ] &] PROG (PARI) sopf(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 1]); isok(n) = sopf(n) == sopf(n-1) + sopf(n-2); \\ Michel Marcus, Feb 12 2020 (Magma) [k:k in [5..560000]| &+PrimeDivisors(k-1)+ &+PrimeDivisors(k-2) eq &+PrimeDivisors(k)]; // Marius A. Burtea, Feb 12 2020 (Python) from sympy import primefactors def sopf(n): return sum(primefactors(n)) def afind(limit): sopfm2, sopfm1, sopf = 2, 3, 2 for k in range(4, limit+1): if sopf == sopfm1 + sopfm2: print(k, end=", ") sopfm2, sopfm1, sopf = sopfm1, sopf, sum(primefactors(k+1)) afind(600000) # Michael S. Branicky, May 23 2021 CROSSREFS Cf. A008472, A075784, A075846, A076525, A076527, A076531, A076532, A076533. Sequence in context: A092544 A319087 A098499 * A075707 A126420 A246607 Adjacent sequences: A075562 A075563 A075564 * A075566 A075567 A075568 KEYWORD nonn AUTHOR Joseph L. Pe, Oct 18 2002 EXTENSIONS Edited and extended by Ray Chandler, Feb 13 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 11:50 EDT 2024. Contains 373677 sequences. (Running on oeis4.)