login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246607
Expansion of e.g.f. exp(x - x^3).
5
1, 1, 1, -5, -23, -59, 241, 2311, 9745, -30743, -529919, -3161069, 6984121, 216832045, 1696212337, -2117117729, -138721306079, -1359994188719, 367573878145, 127713732858667, 1523067770484361, 1104033549399061, -159815269852521359, -2270787199743845705, -3946710127731620303
OFFSET
0,4
LINKS
FORMULA
From Seiichi Manyama, Feb 25 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n-2*k,k)/(n-2*k)!.
a(n) = a(n-1) - 3! * binomial(n-1,2) * a(n-3) for n > 2. (End)
MATHEMATICA
Range[0, 24]! CoefficientList[Series[Exp[x - x^3], {x, 0, 24}], x] (* Robert G. Wilson v, Aug 31 2014, with correction from Vincenzo Librandi *)
PROG
(PARI) default(seriesprecision, 30); serlaplace(exp(x-x^3)) \\ Michel Marcus, Aug 31 2014
(PARI) a(n) = n!*sum(k=0, n\3, (-1)^k*binomial(n-2*k, k)/(n-2*k)!); \\ Seiichi Manyama, Feb 25 2022
(PARI) a(n) = if(n<3, 1, a(n-1)-3!*binomial(n-1, 2)*a(n-3)); \\ Seiichi Manyama, Feb 25 2022
CROSSREFS
Sequence in context: A075565 A075707 A126420 * A116581 A337750 A093622
KEYWORD
sign
AUTHOR
Robert G. Wilson v, Aug 31 2014
STATUS
approved