login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246610
Number of endofunctions on [n] whose cycle lengths are multiples of 3.
2
1, 0, 0, 2, 24, 300, 4480, 78750, 1591296, 36355256, 927244800, 26127386010, 806251494400, 27046291980708, 980094896062464, 38158333538165750, 1588601646620835840, 70427042234715548400, 3312574102411273437184, 164767312911755127462066, 8641342923227371929600000
OFFSET
0,4
LINKS
FORMULA
E.g.f.: 1/(1+LambertW(-x)^3)^(1/3). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ Gamma(5/6) * (n^(n-1/3) / (12^(1/3) * sqrt(Pi))) * (1 - 2^(7/6) * Gamma(1/3)^3 / (9 * Pi^(3/2) * sqrt(n))). - Vaclav Kotesovec, Sep 01 2014
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+3)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= a->add(b(j, 3)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
MATHEMATICA
CoefficientList[Series[1/(1+LambertW[-x]^3)^(1/3), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 01 2014 *)
CROSSREFS
Column k=3 of A246609.
Sequence in context: A336310 A065513 A246190 * A119491 A001864 A099045
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 31 2014
STATUS
approved