login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246611
Number of endofunctions on [n] whose cycle lengths are multiples of 4.
2
1, 0, 0, 0, 6, 120, 2160, 41160, 866460, 20294064, 526680000, 15036999120, 468848156040, 15859299473160, 578619457031616, 22654279249875000, 947570269816868880, 42174922731482980320, 1990416896317283627520, 99290011292792071612704, 5220362654145754082460000
OFFSET
0,5
LINKS
FORMULA
E.g.f.: 1/(1-LambertW(-x)^4)^(1/4). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ n^(n-3/8) * (sqrt(Pi) / (2^(1/8) * Gamma(1/8))) * (1 - 11 * sqrt(2/n) * Gamma(1/8) / (64 * Gamma(5/8))). - Vaclav Kotesovec, Sep 01 2014
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+4)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= a->add(b(j, 4)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
MATHEMATICA
CoefficientList[Series[1/(1-LambertW[-x]^4)^(1/4), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 01 2014 *)
CROSSREFS
Column k=4 of A246609.
Sequence in context: A223629 A065888 A246191 * A185757 A075844 A356506
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 31 2014
STATUS
approved