login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065513
Number of endofunctions of [n] with a cycle a->b->c->a and for all x in [n], some iterate f^k(x)=a.
6
2, 24, 300, 4320, 72030, 1376256, 29760696, 720000000, 19292299290, 567575838720, 18197320924068, 631732166467584, 23613833496093750, 945755921747804160, 40410678374256222960, 1835086247681868693504, 88263072551692077310386, 4482662400000000000000000
OFFSET
3,1
LINKS
FORMULA
E.g.f.: T^3/3 where T=T(x) is Euler's tree function (see A000169).
a(n) = (n-1)*(n-2)*n^(n-3). - Vaclav Kotesovec, Oct 05 2013
a(n) = 2*A053507(n). - Vaclav Kotesovec, Oct 07 2016
EXAMPLE
a(4)=24: 1->2->3->1<-4; 2->3->1->2<-4; 3->1->2->3<-4 1->3->2->1<-4; 3->2->1->3<-4; 2->1->3->2<-4 (repeat with 1,2, then 3 excluded from cycle)
MAPLE
T := x->-LambertW(-x); a := []; f := series((T(x))^3/3, x, 24); for m from 1 to 24 do a := [op(a), op(2*m-1, f)*(m+2)! ] od; print(a);
MATHEMATICA
nn = 18; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
Range[0, nn]! CoefficientList[Series[2 t^3/3!, {x, 0, nn}], x] (* Geoffrey Critzer, Aug 14 2013 *)
PROG
(PARI) for(n=3, 50, print1((n-1)*(n-2)*n^(n-3), ", ")) \\ G. C. Greubel, Nov 14 2017
(Magma) [(n-1)*(n-2)*n^(n-3): n in [3..50]]; // G. C. Greubel, Nov 14 2017
CROSSREFS
Cf. A000169 (unique cycle is length 1), A053506 (unique cycle has length 2).
Column k=3 of A201685.
Sequence in context: A052739 A135389 A336310 * A246190 A246610 A119491
KEYWORD
nonn
AUTHOR
Len Smiley, Nov 27 2001
STATUS
approved