login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of endofunctions of [n] with a cycle a->b->c->a and for all x in [n], some iterate f^k(x)=a.
6

%I #21 Sep 08 2022 08:45:04

%S 2,24,300,4320,72030,1376256,29760696,720000000,19292299290,

%T 567575838720,18197320924068,631732166467584,23613833496093750,

%U 945755921747804160,40410678374256222960,1835086247681868693504,88263072551692077310386,4482662400000000000000000

%N Number of endofunctions of [n] with a cycle a->b->c->a and for all x in [n], some iterate f^k(x)=a.

%H Alois P. Heinz, <a href="/A065513/b065513.txt">Table of n, a(n) for n = 3..150</a>

%F E.g.f.: T^3/3 where T=T(x) is Euler's tree function (see A000169).

%F a(n) = (n-1)*(n-2)*n^(n-3). - _Vaclav Kotesovec_, Oct 05 2013

%F a(n) = 2*A053507(n). - _Vaclav Kotesovec_, Oct 07 2016

%e a(4)=24: 1->2->3->1<-4; 2->3->1->2<-4; 3->1->2->3<-4 1->3->2->1<-4; 3->2->1->3<-4; 2->1->3->2<-4 (repeat with 1,2, then 3 excluded from cycle)

%p T := x->-LambertW(-x); a := []; f := series((T(x))^3/3,x,24); for m from 1 to 24 do a := [op(a),op(2*m-1,f)*(m+2)! ] od; print(a);

%t nn = 18; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];

%t Range[0, nn]! CoefficientList[Series[2 t^3/3!, {x, 0, nn}], x] (* _Geoffrey Critzer_, Aug 14 2013 *)

%o (PARI) for(n=3,50, print1((n-1)*(n-2)*n^(n-3), ", ")) \\ _G. C. Greubel_, Nov 14 2017

%o (Magma) [(n-1)*(n-2)*n^(n-3): n in [3..50]]; // _G. C. Greubel_, Nov 14 2017

%Y Cf. A000169 (unique cycle is length 1), A053506 (unique cycle has length 2).

%Y Column k=3 of A201685.

%K nonn

%O 3,1

%A _Len Smiley_, Nov 27 2001