login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201685
Triangular array read by rows. T(n,k) is the number of connected endofunctions on {1,2,...,n} that have exactly k nodes in the unique cycle of its digraph representation.
3
1, 2, 1, 9, 6, 2, 64, 48, 24, 6, 625, 500, 300, 120, 24, 7776, 6480, 4320, 2160, 720, 120, 117649, 100842, 72030, 41160, 17640, 5040, 720, 2097152, 1835008, 1376256, 860160, 430080, 161280, 40320, 5040, 43046721, 38263752, 29760696, 19840464, 11022480, 4898880, 1632960, 362880, 40320
OFFSET
1,2
COMMENTS
Column k=1: A000169,
Column k=2: A053506,
Column k=3: A065513.
Row sums: A001865.
T(n,n) = (n-1)!, T(n,n-1) = n!.
Sum_{k=1..n} T(n,k)*k = n^n. - Geoffrey Critzer, May 13 2013
From the asymptotic given by N-E. Fahssi in A001865, we see the expected size of the cycle grows as (2*n/Pi)^(1/2). - Geoffrey Critzer, May 13 2013
Central terms: A277168. - Paul D. Hanna, Oct 01 2016
LINKS
FORMULA
E.g.f.: log(1/(1-y*A(x))) where A(x) is the e.g.f. for A000169.
T(n,k) = binomial(n-1,k-1)*n^(n-k)*(k-1)!. - Geoffrey Critzer, May 13 2013
EXAMPLE
Triangle begins as:
1;
2, 1;
9, 6, 2;
64, 48, 24, 6;
625, 500, 300, 120, 24;
7776, 6480, 4320, 2160, 720, 120;
MAPLE
T:= (n, k)-> binomial(n-1, k-1)*n^(n-k)*(k-1)!:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Aug 14 2013
MATHEMATICA
f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Map[f, Drop[Range[0, 10]! CoefficientList[Series[Log[1/(1 - y t)], {x, 0, 10}], {x, y}], 1]] // Grid
PROG
(PARI) T(n, k) = binomial(n-1, k-1)*n^(n-k)*(k-1)!; \\ G. C. Greubel, Jan 08 2020
(Magma) [Binomial(n-1, k-1)*n^(n-k)*Factorial(k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 08 2020
(Sage) [[binomial(n-1, k-1)*n^(n-k)*factorial(k-1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jan 08 2020
(GAP) Flat(List([1..12], n-> List([1..n], k-> Binomial(n-1, k-1)*n^(n-k)*Factorial(k-1) ))); # G. C. Greubel, Jan 08 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Dec 03 2011
STATUS
approved