OFFSET
1,2
COMMENTS
Column k=1: A000169,
Column k=2: A053506,
Column k=3: A065513.
Row sums: A001865.
T(n,n) = (n-1)!, T(n,n-1) = n!.
Sum_{k=1..n} T(n,k)*k = n^n. - Geoffrey Critzer, May 13 2013
From the asymptotic given by N-E. Fahssi in A001865, we see the expected size of the cycle grows as (2*n/Pi)^(1/2). - Geoffrey Critzer, May 13 2013
Central terms: A277168. - Paul D. Hanna, Oct 01 2016
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
FORMULA
E.g.f.: log(1/(1-y*A(x))) where A(x) is the e.g.f. for A000169.
T(n,k) = binomial(n-1,k-1)*n^(n-k)*(k-1)!. - Geoffrey Critzer, May 13 2013
EXAMPLE
Triangle begins as:
1;
2, 1;
9, 6, 2;
64, 48, 24, 6;
625, 500, 300, 120, 24;
7776, 6480, 4320, 2160, 720, 120;
MAPLE
T:= (n, k)-> binomial(n-1, k-1)*n^(n-k)*(k-1)!:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Aug 14 2013
MATHEMATICA
f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Map[f, Drop[Range[0, 10]! CoefficientList[Series[Log[1/(1 - y t)], {x, 0, 10}], {x, y}], 1]] // Grid
PROG
(PARI) T(n, k) = binomial(n-1, k-1)*n^(n-k)*(k-1)!; \\ G. C. Greubel, Jan 08 2020
(Magma) [Binomial(n-1, k-1)*n^(n-k)*Factorial(k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 08 2020
(Sage) [[binomial(n-1, k-1)*n^(n-k)*factorial(k-1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jan 08 2020
(GAP) Flat(List([1..12], n-> List([1..n], k-> Binomial(n-1, k-1)*n^(n-k)*Factorial(k-1) ))); # G. C. Greubel, Jan 08 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Dec 03 2011
STATUS
approved