login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201686
a(n) = binomial(n, [n/2]) - 2.
0
-1, -1, 0, 1, 4, 8, 18, 33, 68, 124, 250, 460, 922, 1714, 3430, 6433, 12868, 24308, 48618, 92376, 184754, 352714, 705430, 1352076, 2704154, 5200298, 10400598, 20058298, 40116598, 77558758, 155117518, 300540193, 601080388, 1166803108, 2333606218, 4537567648, 9075135298, 17672631898, 35345263798, 68923264408, 137846528818
OFFSET
0,5
LINKS
J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178. See Table 3.
FORMULA
Conjecture: +(n+1)*a(n) +2*(-n-1)*a(n-1) +(-3*n+7)*a(n-2) +2*(4*n-9)*a(n-3) +4*(-n+3)*a(n-4)=0. - R. J. Mathar, Jul 17 2014
MATHEMATICA
Table[Binomial[n, Floor[n/2]]-2, {n, 0, 40}] (* Harvey P. Dale, Apr 12 2018 *)
CROSSREFS
Cf. A001405.
Sequence in context: A001977 A008373 A008374 * A008240 A008375 A056309
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 03 2011
STATUS
approved