login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201689
Number of involutions avoiding the pattern 21 (with a dot over the 1).
2
1, 0, 1, 1, 4, 9, 31, 94, 337, 1185, 4540, 17581, 71875, 299646, 1299637, 5760973, 26357764, 123241185, 591877543, 2902472734, 14571525145, 74613410169, 390197960716, 2078859419077, 11290463266843, 62400316038462, 351037047533581, 2007507147853429
OFFSET
0,5
COMMENTS
Baril gives a formula for a(n), but when I evaluate it I get A201687, not the values shown here.
LINKS
J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178. See Theorem 7 and Table 3.
FORMULA
G.f.: 1/(G(0)+x), where G(k) = 1 - x - x^2*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011
G.f.: B(x)/(1+x*B(x)) where B(x) is the o.g.f. for A000085. - Michael D. Weiner, Jan 10 2022
From Alois P. Heinz, Jan 10 2022: (Start)
a(n) = A000085(n) - Sum_{r=0..n-1} a(r)*A000085(n-1-r). [from Baril, corrected]
a(n) mod 2 = A204418(n). (End)
EXAMPLE
G.f.: 1 + x^2 + x^3 + 4*x^4 + 9*x^5 + 31*x^6 + 94*x^7 + 337*x^8 + ...
MAPLE
b:= proc(n) option remember; `if`(n<1, 1, b(n-1)+(n-1)*b(n-2)) end:
a:= proc(n) option remember; b(n)-add(a(r)*b(n-1-r), r=0..n-1) end:
seq(a(n), n=0..28); # Alois P. Heinz, Jan 10 2022
MATHEMATICA
b[n_] := b[n] = If[n < 1, 1, b[n - 1] + (n - 1)*b[n - 2]];
a[n_] := a[n] = b[n] - Sum[a[r]*b[n - 1 - r], {r, 0, n - 1}];
Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz *)
PROG
(PARI) seq(n)={my(g=serlaplace(exp(x+x^2/2 + O(x*x^n)))); Vec(g/(1 + x*g))} \\ Andrew Howroyd, Jan 10 2022
CROSSREFS
Sequence in context: A141043 A111160 A192876 * A356650 A270909 A270152
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 03 2011
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, Jan 10 2022
STATUS
approved