Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Apr 14 2022 08:00:40
%S 1,0,1,1,4,9,31,94,337,1185,4540,17581,71875,299646,1299637,5760973,
%T 26357764,123241185,591877543,2902472734,14571525145,74613410169,
%U 390197960716,2078859419077,11290463266843,62400316038462,351037047533581,2007507147853429
%N Number of involutions avoiding the pattern 21 (with a dot over the 1).
%C Baril gives a formula for a(n), but when I evaluate it I get A201687, not the values shown here.
%H Alois P. Heinz, <a href="/A201689/b201689.txt">Table of n, a(n) for n = 0..800</a>
%H J.-L. Baril, <a href="https://doi.org/10.37236/665">Classical sequences revisited with permutations avoiding dotted pattern</a>, Electronic Journal of Combinatorics, 18 (2011), #P178. See Theorem 7 and Table 3.
%F G.f.: 1/(G(0)+x), where G(k) = 1 - x - x^2*(k+1)/G(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Dec 15 2011
%F G.f.: B(x)/(1+x*B(x)) where B(x) is the o.g.f. for A000085. - _Michael D. Weiner_, Jan 10 2022
%F From _Alois P. Heinz_, Jan 10 2022: (Start)
%F a(n) = A000085(n) - Sum_{r=0..n-1} a(r)*A000085(n-1-r). [from Baril, corrected]
%F a(n) mod 2 = A204418(n). (End)
%e G.f.: 1 + x^2 + x^3 + 4*x^4 + 9*x^5 + 31*x^6 + 94*x^7 + 337*x^8 + ...
%p b:= proc(n) option remember; `if`(n<1, 1, b(n-1)+(n-1)*b(n-2)) end:
%p a:= proc(n) option remember; b(n)-add(a(r)*b(n-1-r), r=0..n-1) end:
%p seq(a(n), n=0..28); # _Alois P. Heinz_, Jan 10 2022
%t b[n_] := b[n] = If[n < 1, 1, b[n - 1] + (n - 1)*b[n - 2]];
%t a[n_] := a[n] = b[n] - Sum[a[r]*b[n - 1 - r], {r, 0, n - 1}];
%t Table[a[n], {n, 0, 28}] (* _Jean-François Alcover_, Apr 14 2022, after _Alois P. Heinz_ *)
%o (PARI) seq(n)={my(g=serlaplace(exp(x+x^2/2 + O(x*x^n)))); Vec(g/(1 + x*g))} \\ _Andrew Howroyd_, Jan 10 2022
%Y Cf. A000085, A201687.
%K nonn
%O 0,5
%A _N. J. A. Sloane_, Dec 03 2011
%E a(0)=1 prepended by _Andrew Howroyd_, Jan 10 2022