login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of endofunctions on [n] whose cycle lengths are multiples of 3.
2

%I #12 Jun 11 2024 01:39:13

%S 1,0,0,2,24,300,4480,78750,1591296,36355256,927244800,26127386010,

%T 806251494400,27046291980708,980094896062464,38158333538165750,

%U 1588601646620835840,70427042234715548400,3312574102411273437184,164767312911755127462066,8641342923227371929600000

%N Number of endofunctions on [n] whose cycle lengths are multiples of 3.

%H Alois P. Heinz, <a href="/A246610/b246610.txt">Table of n, a(n) for n = 0..300</a>

%F E.g.f.: 1/(1+LambertW(-x)^3)^(1/3). - _Vaclav Kotesovec_, Sep 01 2014

%F a(n) ~ Gamma(5/6) * (n^(n-1/3) / (12^(1/3) * sqrt(Pi))) * (1 - 2^(7/6) * Gamma(1/3)^3 / (9 * Pi^(3/2) * sqrt(n))). - _Vaclav Kotesovec_, Sep 01 2014

%p with(combinat):

%p b:= proc(n, i) option remember; `if`(n=0, 1,

%p `if`(i>n, 0, add(b(n-i*j, i+3)*(i-1)!^j*

%p multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))

%p end:

%p a:= a->add(b(j, 3)*n^(n-j)*binomial(n-1, j-1), j=0..n):

%p seq(a(n), n=0..20);

%t CoefficientList[Series[1/(1+LambertW[-x]^3)^(1/3),{x,0,20}],x] * Range[0,20]! (* _Vaclav Kotesovec_, Sep 01 2014 *)

%Y Column k=3 of A246609.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Aug 31 2014