login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(x - x^3).
5

%I #28 Feb 25 2022 11:55:54

%S 1,1,1,-5,-23,-59,241,2311,9745,-30743,-529919,-3161069,6984121,

%T 216832045,1696212337,-2117117729,-138721306079,-1359994188719,

%U 367573878145,127713732858667,1523067770484361,1104033549399061,-159815269852521359,-2270787199743845705,-3946710127731620303

%N Expansion of e.g.f. exp(x - x^3).

%H Vincenzo Librandi, <a href="/A246607/b246607.txt">Table of n, a(n) for n = 0..200</a>

%F From _Seiichi Manyama_, Feb 25 2022: (Start)

%F a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n-2*k,k)/(n-2*k)!.

%F a(n) = a(n-1) - 3! * binomial(n-1,2) * a(n-3) for n > 2. (End)

%t Range[0, 24]! CoefficientList[Series[Exp[x - x^3], {x, 0, 24}], x] (* _Robert G. Wilson v_, Aug 31 2014, with correction from _Vincenzo Librandi_ *)

%o (PARI) default(seriesprecision, 30); serlaplace(exp(x-x^3)) \\ _Michel Marcus_, Aug 31 2014

%o (PARI) a(n) = n!*sum(k=0, n\3, (-1)^k*binomial(n-2*k, k)/(n-2*k)!); \\ _Seiichi Manyama_, Feb 25 2022

%o (PARI) a(n) = if(n<3, 1, a(n-1)-3!*binomial(n-1, 2)*a(n-3)); \\ _Seiichi Manyama_, Feb 25 2022

%Y Cf. A118395, A293604.

%K sign

%O 0,4

%A _Robert G. Wilson v_, Aug 31 2014