login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246606
Central terms of the triangle A116853.
2
1, 4, 78, 3216, 229080, 25022880, 3884393520, 812752093440, 220448163358080, 75225258805132800, 31537353006189676800, 15933924342019634227200, 9548252826112300306406400, 6695627848564821490753228800, 5431772705577464891946292992000, 5047432593984519350928894369792000
OFFSET
1,2
COMMENTS
a(n) = A116853(2*n,n).
LINKS
FORMULA
a(n) = (2*n - 1)!*hypergeom([1 - n], [1 - 2*n], -1). - Peter Luschny, Nov 04 2018
Conjecture: D-finite with recurrence +(-2*n+3)*a(n) +4*(n-1)*(2*n^2-4*n+1)*a(n-1) +(n-1)*(n-2)*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jul 01 2022
a(n) ~ sqrt(Pi) * 2^(2*n) * n^(2*n - 1/2) / exp(2*n + 1/2). - Vaclav Kotesovec, Mar 08 2023
MAPLE
a := n -> (2*n - 1)!*hypergeom([1 - n], [1 - 2*n], -1):
seq(simplify(a(n)), n=1..15); # Peter Luschny, Nov 04 2018
PROG
(Haskell)
a246606 n = a116853 (2 * n - 1) n
CROSSREFS
Sequence in context: A279437 A296997 A220240 * A210903 A054951 A215843
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 31 2014
STATUS
approved