OFFSET
1,3
COMMENTS
This is a subsequence of Euler's difference table A068106 and of A047920 (in a different ordering), since 0! = 1 was left out here. - Georg Fischer, Mar 23 2019
LINKS
Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
FORMULA
Take successive difference rows of factorial numbers n! starting with n=1. Reorient into a triangle format.
EXAMPLE
Starting with 1, 2, 6, 24, 120 ... we take the first difference row (A001563), second, third, etc. Reorient into a flush left format, getting:
[1] 1;
[2] 1, 2;
[3] 3, 4, 6;
[4] 11, 14, 18, 24;
[5] 53, 64, 78, 96, 120;
[6] 309, 362, 426, 504, 600, 720;
...
MATHEMATICA
rows = 8;
rr = Range[rows]!;
dd = Table[Differences[rr, n], {n, 0, rows-1}];
T = Array[t, {rows, rows}];
Do[Thread[Evaluate[Diagonal[T, -k+1]] = dd[[k, ;; rows-k+1]]], {k, rows}];
Table[t[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 21 2019 *)
PROG
(Haskell)
a116853 n k = a116853_tabl !! (n-1) !! (k-1)
a116853_row n = a116853_tabl !! (n-1)
a116853_tabl = map reverse $ f (tail a000142_list) [] where
f (u:us) vs = ws : f us ws where ws = scanl (-) u vs
-- Reinhard Zumkeller, Aug 31 2014
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 24 2006
STATUS
approved