login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A116852
Number of partitions of n-th semiprime into 2 squares.
1
1, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1
OFFSET
1,9
COMMENTS
See also A000161 Number of partitions of n into 2 squares (when order does not matter and zero is allowed).
From Robert Israel, Jun 10 2020: (Start)
a(1)=1 if A001358(n) = p^2 where p is not in A002144.
a(n)=1 if A001358(n) = 2*p where p is in A002144.
a(n)=2 if A001358(n) = p*q where p and q are in A002144 (not necessarily distinct).
a(n)=0 otherwise. (End)
LINKS
FORMULA
a(n) = A000161(A001358(n)).
EXAMPLE
a(1) = 1 because semiprime(1) = 4 = 0^2 + 2^2, the unique sum of squares.
a(2) = 0 because semiprime(2) = 6 has no decomposition into sum of 2 squares because it has a prime factor p == 3 (mod 4) with an odd power.
a(3) = 1 because semiprime(3) = 9 = 0^2 + 3^2, the unique sum of squares.
a(4) = 1 because semiprime(4) = 10 = 2*5 = 1^2 + 3^2.
a(9) = 2 because semiprime(9) = 25 = 0^2 + 5^2 = 3^2 + 4^2, two distinct ways.
a(23) = 2 because semiprime(23) = 65 = 5*13 = 1^2 + 8^2 = 4^2 + 7^2.
a(28) = 2 because semiprime(28) = 85 = 5*17 = 2^2 + 9^2 = 6^2 + 7^2.
a(49) = 2 because semiprime(49) = 145 = 5*29 = 1^2 + 12^2 = 8^2 + 9^2.
a(56) = 2 because semiprime(56) = 169 = 0^2 + 13^2 = 5^2 + 12^2.
a(60) = 2 because semiprime(60) = 185 = 5*37 = 4^2 + 13^2 = 8^2 + 11^2.
MAPLE
R:= NULL: count:= 0:
for n from 4 while count < 100 do
if numtheory:-bigomega(n) = 2 then
count:= count+1;
F:= ifactors(n)[2];
if nops(F) = 1 then
if F[1][1] mod 4 = 1 then v:= 2
else v:= 1
fi
elif F[1][1]=2 and F[2][1] mod 4 = 1 then v:= 1
elif F[1][1] mod 4 = 1 and F[2][1] mod 4 = 1 then v:= 2
else v:= 0
fi;
R:= R, v;
fi
od:
R; # Robert Israel, Jun 10 2020
CROSSREFS
Sequence in context: A291195 A025439 A227840 * A269245 A321886 A060154
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 15 2006
EXTENSIONS
More terms from Giovanni Resta, Jun 15 2016
STATUS
approved