login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A116854
First differences of the rows in the triangle of A116853, starting with 0.
2
1, 1, 1, 3, 1, 2, 11, 3, 4, 6, 53, 11, 14, 18, 24, 309, 53, 64, 78, 96, 120, 2119, 309, 362, 426, 504, 600, 720, 16687, 2119, 2428, 2790, 3216, 3720, 4320, 5040, 148329, 16687, 18806, 21234, 24024, 27240, 30960, 35280, 40320, 1468457, 148329, 165016, 183822, 205056, 229080, 256320, 287280, 322560, 362880
OFFSET
1,4
COMMENTS
Row n contains the first differences of row n of A116853, starting with T(n,1) = A116853(n,1) - 0.
As in A116853, 0! = 1 is omitted here. - Georg Fischer, Mar 23 2019
LINKS
FORMULA
T(n,k) = A116853(n,k) - A116853(n,k-1) if k>1.
T(n,1) = A116853(n,1) = A000255(n-1).
Sum_{k=1..n} T(n,1) = n! = A000142(n).
EXAMPLE
First few rows of the triangle are:
[1] 1;
[2] 1, 1;
[3] 3, 1, 2;
[4] 11, 3, 4, 6;
[5] 53, 11, 14, 18, 24;
[6] 309, 53, 64, 78, 96, 120;
[7] 2119, 309, 362, 426, 504, 600, 720;
...
For example, row 4 (11, 3, 4, 6) are first differences along row 4 of A116853: ((0), 11, 14, 18, 24).
MAPLE
A116853 := proc(n, k) option remember ; if n = k then n! ; else procname(n, k+1)-procname(n-1, k) ; end if; end proc:
A116854 := proc(n, k) if k = 1 then A116853(n, 1) ; else A116853(n, k) -A116853(n, k-1) ; end if; end proc:
seq(seq(A116854(n, k), k=1..n), n=1..15) ; # R. J. Mathar, Mar 27 2010
MATHEMATICA
rows = 10;
rr = Range[rows]!;
dd = Table[Differences[rr, n], {n, 0, rows - 1}];
T = Array[t, {rows, rows}];
Do[Thread[Evaluate[Diagonal[T, -k+1]] = dd[[k, ;; rows-k+1]]], {k, rows}];
Table[({0}~Join~Table[t[n, k], {k, 1, n}]) // Differences, {n, 1, rows}] // Flatten (* Jean-François Alcover, Dec 21 2019 *)
PROG
(Haskell)
a116854 n k = a116854_tabl !! (n-1) !! (k-1)
a116854_row n = a116854_tabl !! (n-1)
a116854_tabl = [1] : zipWith (:) (tail $ map head tss) tss
where tss = a116853_tabl
-- Reinhard Zumkeller, Aug 31 2014
CROSSREFS
Cf. A000142 (row sums), A033815 (central terms), A047920, A068106 (with 0!), A055790 (column k=3), A277609 (k=4), A277563 (k=5), A280425 (k=6).
Sequence in context: A126226 A307665 A144156 * A331692 A016567 A304058
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Feb 24 2006
EXTENSIONS
Definition made concrete and sequence extended by R. J. Mathar, Mar 27 2010
STATUS
approved