OFFSET
0,6
COMMENTS
Triangle T(n,k) (n >= 1, 1 <= k <= n) giving number of ways of winning with (n-k+1)st card in the generalized "Game of Thirteen" with n cards.
From Emeric Deutsch, Apr 21 2009: (Start)
T(n-1,k-1) is the number of non-derangements of {1,2,...,n} having largest fixed point equal to k. Example: T(3,1)=3 because we have 1243, 4213, and 3241.
Mirror image of A047920.
(End)
LINKS
Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
W. Y. C. Chen et al., Higher-order log-concavity in Euler's difference table, Discrete Math., 311 (2011), 2128-2134.
P. R. de Montmort, On the Game of Thirteen (1713), reprinted in Annotated Readings in the History of Statistics, ed. H. A. David and A. W. F. Edwards, Springer-Verlag, 2001, pp. 25-29.
Emeric Deutsch and S. Elizalde, The largest and the smallest fixed points of permutations, arXiv:0904.2792 [math.CO], 2009.
D. Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78.
Philip Feinsilver and John McSorley, Zeons, Permanents, the Johnson scheme, and Generalized Derangements, arXiv:1710.00788 [math.CO], (2017); see page 29.
P. Feinsilver and J. McSorley, Zeons, Permanents, the Johnson scheme, and Generalized Derangements, International Journal of Combinatorics, 2011 (2011).
Fanja Rakotondrajao, k-Fixed-Points-Permutations, Integers: Electronic journal of combinatorial number theory 7 (2007) A36.
FORMULA
T(n, k) = Sum_{j>= 0} (-1)^j*binomial(n-k, j)*(n-j)!. - Philippe Deléham, May 29 2005
From Emeric Deutsch, Jul 18 2009: (Start)
T(n,k) = Sum_{j=0..k} d(n-j)*binomial(k, j), where d(i) = A000166(i) are the derangement numbers.
Sum_{k=0..n} (k+1)*T(n,k) = A000166(n+2) (the derangement numbers). (End)
T(n, k) = n!*hypergeom([k-n], [-n], -1). - Peter Luschny, Oct 05 2017
D-finite recurrence for columns: T(n,k) = n*T(n-1,k) + (n-k)*T(n-2,k). - Georg Fischer, Aug 13 2022
EXAMPLE
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 1, 1, 2;
[3] 2, 3, 4, 6;
[4] 9, 11, 14, 18, 24;
[5] 44, 53, 64, 78, 96, 120;
[6] 265, 309, 362, 426, 504, 600, 720;
[7] 1854, 2119, 2428, 2790, 3216, 3720, 4320, 5040.
MAPLE
d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k <= n then sum(binomial(k, j)*d[n-j], j = 0 .. k) else 0 end if end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form; Emeric Deutsch, Jul 18 2009
MATHEMATICA
t[n_, k_] := Sum[(-1)^j*Binomial[n-k, j]*(n-j)!, {j, 0, n}]; Flatten[ Table[ t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Feb 21 2012, after Philippe Deléham *)
T[n_, k_] := n! HypergeometricPFQ[{k-n}, {-n}, -1];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Peter Luschny, Oct 05 2017 *)
PROG
(Haskell)
a068106 n k = a068106_tabl !! n !! k
a068106_row n = a068106_tabl !! n
a068106_tabl = map reverse a047920_tabl
-- Reinhard Zumkeller, Mar 05 2012
CROSSREFS
Row sums give A002467.
Diagonals give A000142, A001563, A001564, A001565, A001688, A001689, A023043, A023044, A023045, A023046, A023047 (factorials and k-th differences, k=1..10).
T(2*n, n) is A033815.
KEYWORD
AUTHOR
N. J. A. Sloane, Apr 12 2002
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 01 2003
Edited by N. J. A. Sloane, Sep 24 2011
STATUS
approved