login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068106
Euler's difference table: triangle read by rows, formed by starting with factorial numbers (A000142) and repeatedly taking differences. T(n,n) = n!, T(n,k) = T(n,k+1) - T(n-1,k).
23
1, 0, 1, 1, 1, 2, 2, 3, 4, 6, 9, 11, 14, 18, 24, 44, 53, 64, 78, 96, 120, 265, 309, 362, 426, 504, 600, 720, 1854, 2119, 2428, 2790, 3216, 3720, 4320, 5040, 14833, 16687, 18806, 21234, 24024, 27240, 30960, 35280, 40320, 133496, 148329, 165016, 183822, 205056, 229080, 256320, 287280, 322560, 362880
OFFSET
0,6
COMMENTS
Triangle T(n,k) (n >= 1, 1 <= k <= n) giving number of ways of winning with (n-k+1)st card in the generalized "Game of Thirteen" with n cards.
From Emeric Deutsch, Apr 21 2009: (Start)
T(n-1,k-1) is the number of non-derangements of {1,2,...,n} having largest fixed point equal to k. Example: T(3,1)=3 because we have 1243, 4213, and 3241.
Mirror image of A047920.
(End)
LINKS
W. Y. C. Chen et al., Higher-order log-concavity in Euler's difference table, Discrete Math., 311 (2011), 2128-2134.
P. R. de Montmort, On the Game of Thirteen (1713), reprinted in Annotated Readings in the History of Statistics, ed. H. A. David and A. W. F. Edwards, Springer-Verlag, 2001, pp. 25-29.
Emeric Deutsch and S. Elizalde, The largest and the smallest fixed points of permutations, arXiv:0904.2792 [math.CO], 2009.
D. Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78.
Philip Feinsilver and John McSorley, Zeons, Permanents, the Johnson scheme, and Generalized Derangements, arXiv:1710.00788 [math.CO], (2017); see page 29.
P. Feinsilver and J. McSorley, Zeons, Permanents, the Johnson scheme, and Generalized Derangements, International Journal of Combinatorics, 2011 (2011).
Fanja Rakotondrajao, k-Fixed-Points-Permutations, Integers: Electronic journal of combinatorial number theory 7 (2007) A36.
FORMULA
T(n, k) = Sum_{j>= 0} (-1)^j*binomial(n-k, j)*(n-j)!. - Philippe Deléham, May 29 2005
From Emeric Deutsch, Jul 18 2009: (Start)
T(n,k) = Sum_{j=0..k} d(n-j)*binomial(k, j), where d(i) = A000166(i) are the derangement numbers.
Sum_{k=0..n} (k+1)*T(n,k) = A000166(n+2) (the derangement numbers). (End)
T(n, k) = n!*hypergeom([k-n], [-n], -1). - Peter Luschny, Oct 05 2017
D-finite recurrence for columns: T(n,k) = n*T(n-1,k) + (n-k)*T(n-2,k). - Georg Fischer, Aug 13 2022
EXAMPLE
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 1, 1, 2;
[3] 2, 3, 4, 6;
[4] 9, 11, 14, 18, 24;
[5] 44, 53, 64, 78, 96, 120;
[6] 265, 309, 362, 426, 504, 600, 720;
[7] 1854, 2119, 2428, 2790, 3216, 3720, 4320, 5040.
MAPLE
d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k <= n then sum(binomial(k, j)*d[n-j], j = 0 .. k) else 0 end if end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form; Emeric Deutsch, Jul 18 2009
MATHEMATICA
t[n_, k_] := Sum[(-1)^j*Binomial[n-k, j]*(n-j)!, {j, 0, n}]; Flatten[ Table[ t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Feb 21 2012, after Philippe Deléham *)
T[n_, k_] := n! HypergeometricPFQ[{k-n}, {-n}, -1];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Peter Luschny, Oct 05 2017 *)
PROG
(Haskell)
a068106 n k = a068106_tabl !! n !! k
a068106_row n = a068106_tabl !! n
a068106_tabl = map reverse a047920_tabl
-- Reinhard Zumkeller, Mar 05 2012
CROSSREFS
Row sums give A002467.
Diagonals give A000142, A001563, A001564, A001565, A001688, A001689, A023043, A023044, A023045, A023046, A023047 (factorials and k-th differences, k=1..10).
See A047920 and A086764 for other versions.
T(2*n, n) is A033815.
Sequence in context: A321969 A163770 A035561 * A186964 A005856 A157876
KEYWORD
nonn,easy,tabl,nice
AUTHOR
N. J. A. Sloane, Apr 12 2002
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 01 2003
Edited by N. J. A. Sloane, Sep 24 2011
STATUS
approved