login
A033815
Number of standard permutations of [ a_1..a_n b_1..b_n ] (b_i is not immediately followed by a_i, for all i).
14
1, 1, 14, 426, 24024, 2170680, 287250480, 52370755920, 12585067447680, 3854801333416320, 1465957162768492800, 677696237345719468800, 374281829360322587827200, 243388909697235614324812800, 184070135024053703140543027200, 160192129141963141211280644352000
OFFSET
0,3
COMMENTS
Also turns up as the solution to Problem #18, p. 326 of Alan Tucker's Applied Combinatorics, 4th ed, Wiley NY 2002 [Tucker's `n' is the `2n' here]. - John L Leonard, Sep 15 2003
Number of acyclic orientations of the Turán graph T(2n,n). - Alois P. Heinz, Jan 13 2016
n-th term of the n-th forward differences of n!. - Alois P. Heinz, Feb 22 2019
REFERENCES
R. P. Stanley, Enumerative Combinatorics I, Chap.2, Exercise 10, p. 89.
LINKS
Leo Chao, Paul DesJarlais and John L Leonard, A binomial identity, via derangements, Math. Gaz. 89 (2005), 268-270.
Ira Gessel, Enumerative applications of symmetric functions, Séminaire Lotharingien de Combinatoire, B17a (1987), 17 pp.
FORMULA
a(n) = A002119(n)*n!*(-1)^n.
D-finite with recurrence a(n) = 2n*(2n-1)*a(n-1) + n*(n-1)*a(n-2).
a(n) = Sum_{i=0..n} binomial(n, i)*(-1)^i*(2*n-i)!.
From John L Leonard, Sep 15 2003: (Start)
a(n) = Sum_{i=0..n} C(n, i)*(2n-i)!*Sum_{j=0..2n-i} (-1)^j/j!.
a(n) = n!*Sum_{i=0..n} C(n, i)*n!/(n-i)!*Sum_{j=0..n-i} (-1)^j*C(n-i, j)*(n-j)!/i!. (End)
a(n) = Sum_{k=0..n} binomial(n,k)*A000166(n+k). - Vladeta Jovovic, Sep 04 2006
a(n) = A116854(2*n+1,n+1). - Reinhard Zumkeller, Aug 31 2014
a(n) = A267383(2n,n). - Alois P. Heinz, Jan 13 2016
a(n) ~ sqrt(Pi) * 2^(2*n + 1) * n^(2*n + 1/2) / exp(2*n + 1/2). - Vaclav Kotesovec, Feb 18 2017
a(n) = n!*exp(-1/2)*((-1)^n * BesselI(n+1/2,1/2)*Pi^(1/2) + BesselK(n+1/2,1/2)/Pi^(1/2) ). - Mark van Hoeij, Jul 15 2022
MAPLE
A033815 := proc(n) local i; add(binomial(n, i)*(-1)^i*(2*n - i)!, i = 0 .. n) end;
# second Maple program:
A:= proc(n, k) A(n, k):= `if`(k=0, n!, A(n+1, k-1) -A(n, k-1)) end:
a:= n-> A(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Feb 22 2019
MATHEMATICA
a[n_] := (2n)!*Hypergeometric1F1[-n, -2n, -1]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 13 2012, after Vladimir Reshetnikov *)
PROG
(Haskell)
a033815 n = a116854 (2 * n + 1) (n + 1)
-- Reinhard Zumkeller, Aug 31 2014
CROSSREFS
Main diagonal of array in A068106 and of A047920.
Column k=2 of A372326.
Sequence in context: A236156 A258392 A269504 * A187358 A103916 A201546
KEYWORD
nonn,easy,nice
STATUS
approved