login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033817 Convolution of natural numbers n >= 1 with Lucas numbers L(k) for k >= -4. 1
7, 10, 16, 21, 28, 36, 47, 62, 84, 117, 168, 248, 375, 578, 904, 1429, 2276, 3644, 5855, 9430, 15212, 24565, 39696, 64176, 103783, 167866, 271552, 439317, 710764, 1149972, 1860623, 3010478, 4870980, 7881333, 12752184, 20633384, 33385431, 54018674, 87403960, 141422485 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = L(-1)*(F(n+1)-1) + L(-2)*F(n) - L(-3)*n, F(n): Fibonacci (A000045), L(n): Lucas (A000032) with L(-n)=(-1)^n*L(n)

G.f.: x*(7-11*x)/((1-x-x^2)*(1-x)^2).

a(n) = Lucas(n-1) + 4*n + 1. - G. C. Greubel, Jun 01 2019

MATHEMATICA

Table[LucasL[n-1] +4*n+1, {n, 1, 40}] (* G. C. Greubel, Jun 01 2019 *)

PROG

(PARI) vector(40, n, fibonacci(n) + fibonacci(n-2) +4*n+1) \\ G. C. Greubel, Jun 01 2019

(MAGMA) [Lucas(n-1) + 4*n + 1 : n in [1..40]]; // G. C. Greubel, Jun 01 2019

(Sage) [lucas_number2(n-1, 1, -1) +4*n+1 for n in (1..40)] # G. C. Greubel, Jun 01 2019

(GAP) List([1..40], n-> Lucas(1, -1, n-1)[2] +4*n+1 ) # G. C. Greubel, Jun 01 2019

CROSSREFS

Cf. A000032, A000045, A023548, A023537, A033814.

Sequence in context: A234093 A287567 A301451 * A286873 A218128 A175666

Adjacent sequences:  A033814 A033815 A033816 * A033818 A033819 A033820

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

EXTENSIONS

Terms a(31) onward added by G. C. Greubel, Jun 01 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 02:22 EST 2020. Contains 331976 sequences. (Running on oeis4.)