OFFSET
0,6
COMMENTS
An analog to the derangement triangle (A068106).
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
Peter Luschny, Swinging Factorial.
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
FORMULA
T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040).
EXAMPLE
1
0, 1
1, 1, 2
2, 3, 4, 6
-9, -7, -4, 0, 6
44, 35, 28, 24, 24, 30
-165, -121, -86, -58, -34, -10, 20
MAPLE
DiffTria := proc(f, n, display) local m, A, j, i, T; T:=f(0);
for m from 0 by 1 to n-1 do A[m] := f(m);
for j from m by -1 to 1 do A[j-1] := A[j-1] - A[j] od;
for i from 0 to m do T := T, (-1)^(m-i)*A[i] od;
if display then print(seq(T[i], i=nops([T])-m..nops([T]))) fi;
od; subsop(1=NULL, [T]) end:
swing := proc(n) option remember; if n = 0 then 1 elif
irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
Computes n rows of the triangle.
A163770 := n -> DiffTria(k->swing(k), n, true);
A068106 := n -> DiffTria(k->factorial(k), n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 05 2009
STATUS
approved